Candidate Biomarkers for Targeting in Type 1 Diabetes; A Bioinformatic Analysis of Pancreatic Cell Surface Antigens

Document Type : Original Article


1 Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran

2 Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran

3 National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran

4 Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran

5 Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran


Objective: Type 1 diabetes (T1Ds) is an autoimmune disease in which the immune system invades and destroys
insulin-producing cells. Nevertheless, at the time of diagnosis, about 30-40% of pancreatic beta cells are healthy and
capable of producing insulin. Bi-specific antibodies, chimeric antigen receptor regulatory T cells (CAR-Treg cells), and
labeled antibodies could be a new emerging option for the treatment or diagnosis of type I diabetic patients. The aim
of the study is to choose appropriate cell surface antigens in the pancreas tissue for generating an antibody for type I
diabetic patients.
Materials and Methods: In this bioinformatics study, we extracted pancreas-specific proteins from two large
databases; the Human Protein Atlas (HPA) and Genotype-Tissue Expression (GTEx) Portal. Pancreatic-enriched
genes were chosen and narrowed down by Protter software for the investigation of accessible extracellular domains.
The immunohistochemistry (IHC) data of the protein atlas database were used to evaluate the protein expression of
selected antigens. We explored the function of candidate antigens by using the GeneCards database to evaluate the
potential dysfunction or activation/hyperactivation of antigens after antibody binding.
Results: The results showed 429 genes are highly expressed in the pancreas tissue. Also, eighteen genes encoded
plasma membrane proteins that have high expression in the microarray (GEO) dataset. Our results introduced four
structural proteins, including NPHS1, KIRREL2, GP2, and CUZD1, among all seventeen candidate proteins.
Conclusion: The presented antigens can potentially be used to produce specific pancreatic antibodies that guide CARTreg,
bi-specific, or labeling molecules to the pancreas for treatment, detection, or other molecular targeted therapy
scopes for type I diabetes.


Main Subjects

  1. Ilonen J, Lempainen J, Veijola R. The heterogeneous pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol. 2019; 15(11): 635-650.
  2. Paschou SA, Papadopoulou-Marketou N, Chrousos GP, Kanaka- Gantenbein C. On type 1 diabetes mellitus pathogenesis. Endocr Connect. 2018; 7(1): R38-R46.
  3. Jwad SM, AL-Fatlawi HY. Types of diabetes and their effect on the immune system. J Adv Pharm Pract. 2022; 4(1): 21-30.
  4. Perry JS, Hsieh CS. Development of T-cell tolerance utilizes both cell-autonomous and cooperative presentation of self-antigen. Immunol Rev. 2016; 271(1): 141-155.
  5. Labrijn AF, Janmaat ML, Reichert JM, Parren PWHI. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov. 2019; 18(8): 585-608.
  6. Kufer P, Lutterbüse R, Baeuerle PA. A revival of bispecific antibodies. Trends Biotechnol. 2004; 22(5): 238-244.
  7. Topp MS, Stelljes M, Zugmaier G, Barnette P, Heffner LT Jr, Trippett T, et al. Blinatumomab retreatment after relapse in patients with relapsed/refractory B-precursor acute lymphoblastic leukemia. Leukemia. 2018; 32(2): 562-565.
  8. Balcerek J, Shy BR, Putnam AL, Masiello LM, Lares A, Dekovic F, et al. Polyclonal regulatory T cell manufacturing under cGMP: a decade of experience. Front Immunol. 2021; 12: 744763.
  9. Mohseni YR, Tung SL, Dudreuilh C, Lechler RI, Fruhwirth GO, Lombardi G. The future of regulatory T cell therapy: promises and challenges of implementing CAR technology. Front Immunol. 2020; 11: 1608.
  10. Tarbell KV, Yamazaki S, Olson K, Toy P, Steinman RM. CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J Exp Med. 2004; 199(11): 1467-1477.
  11. Tang Q, Henriksen KJ, Bi M, Finger EB, Szot G, Ye J, et al. In vitroexpanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med. 2004; 199(11): 1455-1465.
  12. Chopra A, Shan L, Eckelman WC, Leung K, Latterner M, Bryant SH, et al. Molecular imaging and contrast agent database (MICAD): evolution and progress. Mol Imaging Biol. 2012; 14(1): 4-13.
  13. Sjöstedt E, Zhong W, Fagerberg L, Karlsson M, Mitsios N, Adori C, et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science. 2020; 367(6482): eaay5947.
  14. Cunningham F, Amode MR, Barrell D, Beal K, Billis K, Brent S, et al. Ensembl 2015. Nucleic Acids Res. 2015; 43(Database issue): D662-D669.
  15. Karlsson M, Zhang C, Méar L, Zhong W, Digre A, Katona B, et al. A single-cell type transcriptomics map of human tissues. Sci Adv. 2021; 7(31): eabh2169.
  16. Rosenbloom KR, Sloan CA, Malladi VS, Dreszer TR, Learned K, Kirkup VM, et al. ENCODE data in the UCSC Genome Browser: year 5 update. Nucleic Acids Res. 2013; 41(Database issue): D56- D63.
  17. Omasits U, Ahrens CH, Müller S, Wollscheid B. Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics. 2014; 30(6): 884-886.
  18. Thul PJ, Åkesson L, Wiking M, Mahdessian D, Geladaki A, Ait Blal H, et al. A subcellular map of the human proteome. Science. 2017; 356(6340): eaal3321.
  19. Karlsson M, Zhang C, Méar L, Zhong W, Digre A, Katona B, et al. A single-cell type transcriptomics map of human tissues. Sci Adv. 2021; 7(31): eabh2169.
  20. Kampf C, Olsson I, Ryberg U, Sjöstedt E, Pontén F. Production of tissue microarrays, immunohistochemistry staining and digitalization within the human protein atlas. J Vis Exp. 2012; (63): 3620.
  21. Peng S, Zhou Y, Xiong L, Wang Q. Identification of novel targets and pathways to distinguish suicide dependent or independent on depression diagnosis. Sci Rep. 2023; 13(1): 2488.
  22. Kuo L, Yu F, Zhao Y. Statistical methods for identifying differentially expressed genes in replicated microarray experiments: a review. Stat Adv Biomed Science. 2008: 341.
  23. Cramer AO, van Ravenzwaaij D, Matzke D, Steingroever H, Wetzels R, Grasman RP, et al. Hidden multiplicity in exploratory multiway ANOVA: Prevalence and remedies. Psychon Bull Rev. 2016; 23(2): 640-647.
  24. von Scholten BJ, Kreiner FF, Gough SCL, von Herrath M. Current and future therapies for type 1 diabetes. Diabetologia. 2021; 64(5): 1037-1048.
  25. Haen SP, Löffler MW, Rammensee HG, Brossart P. Towards new horizons: characterization, classification and implications of the tumour antigenic repertoire. Nat Rev Clin Oncol. 2020; 17(10): 595- 610.
  26. Muraro MJ, Dharmadhikari G, Grün D, Groen N, Dielen T, Jansen E, et al. A single-cell transcriptome atlas of the human pancreas. Cell Syst. 2016; 3(4): 385-394. e3.
  27. Kawasaki E. ZnT8 and type 1 diabetes. Endocr J. 2012; 59(7): 531- 537.
  28. Zhuo L, Huang L, Yang Z, Li G, Wang L. A comprehensive analysis of NPHS1 gene mutations in patients with sporadic focal segmental glomerulosclerosis. BMC Med Genet. 2019; 20(1): 111.
  29. Korshunov A, Okonechnikov K, Stichel D, Schrimpf D, Delaidelli A, Tonn S, et al. Gene expression profiling of Group 3 medulloblastomas defines a clinically tractable stratification based on KIRREL2 expression. Acta Neuropathol. 2022; 144(2): 339-352.
  30. Lin Y, Nakatochi M, Hosono Y, Ito H, Kamatani Y, Inoko A, et al. Genome-wide association meta-analysis identifies GP2 gene risk variants for pancreatic cancer. Nat Commun. 2020; 11(1): 3175.
  31. Rygiel AM, Unger LS, Sörgel FL, Masson E, Matsumoto R, Ewers M, et al. Variants in the pancreatic CUB and zona pellucida-like domains 1 (CUZD1) gene in early-onset chronic pancreatitis - A possible new susceptibility gene. Pancreatology. 2022; 22(5): 564-571.
  32. Bausch-Fluck D, Goldmann U, Müller S, van Oostrum M, Müller M, Schubert OT, et al. The in silico human surfaceome. Proc Natl Acad Sci USA. 2018; 115(46): E10988-E1099.
  33. Hong Y, Park C, Kim N, Cho J, Moon SU, Kim J, et al. QSurface: fast identification of surface expression markers in cancers. BMC Syst Biol. 2018; 12 Suppl 2: 17.
  34. Pont MJ, Honders MW, Kremer AN, van Kooten C, Out C, Hiemstra PS, et al. Microarray gene expression analysis to evaluate cell type specific expression of targets relevant for immunotherapy of hematological malignancies. PLoS One. 2016; 11(5): e0155165.
  35. Orentas RJ, Yang JJ, Wen X, Wei JS, Mackall CL, Khan J. Identification of cell surface proteins as potential immunotherapy targets in 12 pediatric cancers. Front Oncol. 2012; 2: 194.
  36. Magaki S, Hojat SA, Wei B, So A, Yong WH. An introduction to the performance of immunohistochemistry. Methods Mol Biol. 2019; 1897: 289-298.
  37. Toledo PL, Vazquez DS, Gianotti AR, Abate MB, Wegbrod C, Torkko JM, et al. Condensation of the β-cell secretory granule luminal cargoes pro/insulin and ICA512 RESP18 homology domain. Protein Sci. 2023; 32(6): e4649.
  38. da Silva IV, Soveral G. Aquaporins in immune cells and inflammation: new targets for drug development. Int J Mol Sci. 2021; 22(4): 1845.