Restoration of MiR-34a Expression by 5-Azacytidine Augments Alimta -Induced Cell Death in Non-Small Lung Cancer Cells by Downregulation of HMG B1, A2 and Bcl-2 Pathway

Document Type : Original Article

Authors

Abstract

Objective
Alimta (Pemetrexed) as an antifolate drug has been approved for the treatment of lung cancer. The aim of the present study was to investigate the combination effect of 5-Azacytidine (5-aza) and Alimta on the miR-34a and its target genes expression and induction of apoptotic cell death in non-small lung cancer A549 cells.
Materials and Methods
In this experimental study, lung cancer A549 cells were treated with various concentrations of Alimta alone and combined with 5-Aza. Then, viability was assessed by trypan blue and MTT assays. mRNA expressions were performed by real time-polymerase chain reaction (PCR) and western blot. Flow cytometry used to detect apoptotic/ necrotic cells and cell cycle arrest.
Results
Alimta alone reduced viability of the cells in a dose dependent manner with the half-maximal inhibitory concentration (IC50) value of 12 µM. Pretreatment of the cells with 5-aza (5 µM) induced a synergistic cytotoxic effect with IC50of 3 µM. Sequential exposure of the cells to 5-aza and Alimta enhanced miR-34a expression and significantly downregulated HMGB1, HMGA2 and BCL-2 expressions. Also, it was associated with reduction of nuclear HMGB1 and HMGA2 content. Caspase-3 activation, HMGB1 release into extracellular space and staining of the cells with annexine V/PI suggested that 5-aza reduced late apoptotic/necrotic cell death induced by Alimta. In addition, combination of 5-aza and Alimta arrested the cells at S and sub-G1 phases and inhibited colony formation.
Conclusion
5-aza synergistically enhances Alimta induced apoptotic cell death through HMG proteins regulation, MIR34A gene expression and intrinsic apoptosis mechanism, providing a promising combination therapy in clinical lung cancer therapy.

Keywords