Pluripotency Potential of Embryonic Stem Cell-Like Cells Derived from Mouse Testis

Document Type : Original Article

Authors

1 Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran

2 Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran

3 Institute for Anatomy and Cell Biology, Medical Faculty, Heidelberg University, Im Neuenheimer Feld, Heidelberg, Germany

Abstract

Objective
During the cultivation of spermatogonial stem cells (SSCs) and their conversion into embryonic stem-like (ES-like) cells, transitional ES-like colonies and epiblast-like cells were observable. In the present experimental study, we aimed to analyze the efficiency of the multipotency or pluripotency potential of ES-like cells, transitional colonies and epiblast-like cells.
Materials and Methods
In this experimental study, SSCs were isolated from transgenic octamer-binding transcription factor 4 (Oct4)-green fluorescent protein (GFP)-reporter mice. During cell culture ES-like, transitional and epiblast- like colonies developed spontaneously. The mRNA and protein expression of pluripotency markers were analyzed by Fluidigm real-time polymerase chain reaction (RT-PCR) and immunocytochemistry, respectively. Efficiency to produce chimera mice was evaluated after injection of ES and ES-like cells into blastocysts.
Results
Microscopic analyses demonstrated that the expression of Oct4-GFP in ES-like cells was very strong, in epiblast-like cells was not detectable, and was only partial in transitional colonies. Fluidigm RT-PCR showed a higher expression of the germ cell markers Stra-8 and Gpr-125 in ES-like cells and the pluripotency genes Dppa5, Lin28, Klf4, Gdf3 and Tdgf1 in ES-like colonies and embryonic stem cells (ESCs) compared to the epiblast-like and transitional colonies. No significant expression of Oct-4, Nanog, Sox2 and c-Myc was observed in the different groups. We showed a high expression level of Nanog and Klf4 in ES-like, while only a partial expression was observed in transitional colonies. We generated chimeric mice after blastocystic injection from ES and ES-like cells, but not from transitional colonies. We observed that the efficiency to produce chimeric mice in ES cells was more efficient (59%) in comparison to ES-like cells (22%).
Conclusion
This new data provides more information on the pluripotency or multipotency potentials of testis-derived ES-like cells in comparison to transitional colonies and epiblast-like cells.

Keywords