Uterine Dendritic Cells Modulation by Mesenchymal Stem Cells Provides A Protective Microenvironment at The Feto-Maternal Interface: Improved Pregnancy Outcome in Abortion-Prone Mice

Document Type : Original Article



Dendritic cells (DCs) as major regulators of the immune response in the decidua play a pivotal role in establishment and maintenance of pregnancy. Immunological disorders are considered to be the main causes of unexplained recurrent spontaneous abortions (RSAs). Recently, we reported that mesenchymal stem cells (MSCs) therapy could improve fetal survival and reduce the abortion rate in abortion-prone mice, although the precise mechanisms of this action are poorly understood. Since MSCs have been shown to exert immunomodulatory effects on the immune cells, especially DCs, this study was performed to investigate the capability of MSCs to modulate the frequency, maturation state, and phenotype of uterine DCs (uDCs) as a potential mechanism for the improvement of pregnancy outcome.
Materials and Methods
In this experimental study, adipose-derived MSCs were intraperitoneally administered to abortion-prone pregnant mice on the fourth day of gestation. On the day 13.5 of pregnancy, after the determination of abortion rates, the frequency, phenotype, and maturation state of uDCs were analyzed using flow cytometry.
Our results indicated that the administration of MSCs, at the implantation window, could significantly decrease the abortion rate and besides, increase the frequency of uDCs. MSCs administration also remarkably decreased the expression of DCs maturation markers (MHC-II, CD86, and CD40) on uDCs. However, we did not find any difference in the expression of CD11b on uDCs in MSCs-treated compared to control mice.
Regarding the mutual role of uDCs in establishment of a particular immunological state required for appropriate implantation, proper maternal immune responses and development of successful pregnancy, it seems that the modulation of uDCs by MSCs could be considered as one of the main mechanisms responsible for the positive effect of MSCs on treatment of RSA.