Metabolic Signature of Pluripotent Stem Cells

Document Type : Original Article

Authors

1 Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran;Department of Stem Cells and Developmental Biology, Cell Science Research C

2 Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran

3 Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran;Department of Systems Biology, Agricultural Biotechnology Research Institut

Abstract

Objective
Pluripotent stem cells (PSCs), with the capacity to self-renew and differentiate into all other cell types, are of benefit in regenerative medicine applications. Tightly controlled gene expression networks and epigenetic factors regulate these properties. In this study, we aim to evaluate the metabolic signature of pluripotency under 2i and R2i culture conditions versus serum condition.
Materials and Methods
In this experimental study, we investigated bioinformatics analysis of the shotgun proteomics data for cells grown under 2i, R2i, and serum culture conditions. The findings were validated by cell cycle analysis and gene expressions of the cells with flow cytometry and quantitative reverse transcription-polymerase chain reaction (qRT-PCR), respectively.
Results
Expressions of 163 proteins increased in 2i-grown cells and 181 proteins increased in R2i-grown cells versus serum, which were mostly involved in glycolysis signaling pathway, oxidation-reduction, metabolic processes, amino acid and lipid metabolism. Flow cytometry analysis showed significant accumulation of cells in S phase for 2i (70%) and R2i (61%) grown cells.
Conclusion
This study showed that under 2i and R2i conditions, glycolysis was highlighted for energy production and used to maintain high levels of glycolytic intermediates to support cell proliferation. Cells grown under 2i and R2i conditions showed rapid cell cycling in comparison with the cells grown under serum conditions.

Keywords