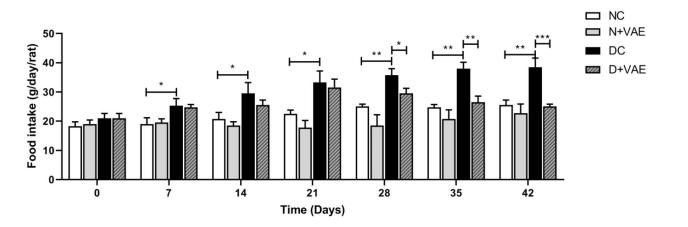
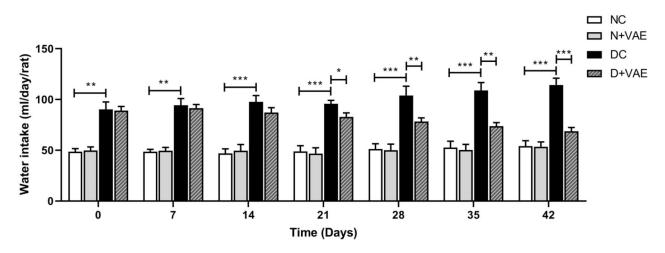
Supplementary Information for

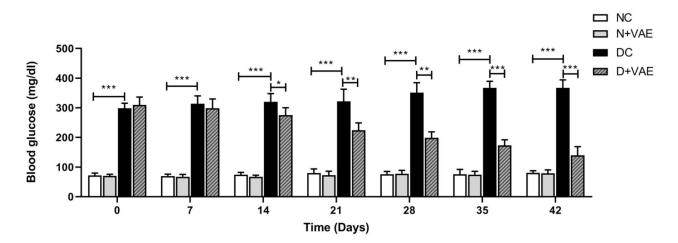

The Potential Hepatoprotective Effect of *Vaccinium arctostaphylos* L. Fruit Extract in Diabetic Rat

Negar Saliani, Ph.D.¹, Shideh Montasser Kouhsari, Ph.D.^{1*} (D), Maryam Izad, Ph.D.²

1. Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran 2. Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

Gene	Primer sequence (5'-3')	Product size (bp)	Accession No.
Irs1	F: GATACCGATGGCTTCTCAGACG R: TCGTTCTCATAATACTCCAGGCG	134	NM_012969.2
Glut2	F: GTCCAGAAAGCCCCAGATACC R: TGCCCCTTAGTCTTTTCAAGCT	81	NM_012879.2
Pparg	F: GCCTGCGGAAGCCCTTTGGT R: AAGCCTGGGCGGTCTCCACT	136	NM-001145366.1
Srebp1c	F: CGCTACCGTTCCTCTATCAATGAC R: AGTTTCTGGTTGCTGTGCTGTAAG	140	NM_001276707.1
Actb	F: GACCCAGATCATGTTTGAGACC R: AGGCATACAGGGACAACACA	77	NM_031144.3


Table S1: The list of primers used for real-time polymerase chain reaction analysis


Fig.S1: Effect of VAE on food intake in normal and experimental rats. Bars represent the mean ± SD of eight rats per group. Evaluation was performed by two-way ANOVA followed by *post hoc* Tukey's test. *; P<0.05, **; P<0.01, ***; P<0.001: statistical differences in comparison to the diabetic control group, NC; Normal control, N+VAE; Normal rats subjected to VAE treatment, DC; Diabetic control, and D+VAE; Diabetic rats subjected to VAE treatment.

Received: 14/June/2023, Revised: 08/August/2023, Accepted: 28/August/2023 *Corresponding Address: P.O.Box: 14155-6455, Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran, Email: sh_montasser@ut.ac.ir

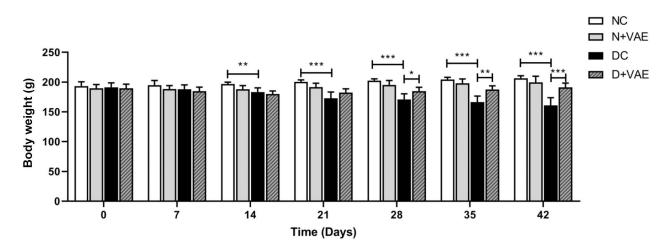


Fig.S2: Effect of VAE on water intake in normal and experimental rats. Bars represent the mean ± SD of eight rats per group. Evaluation was performed by two-way ANOVA followed by *post hoc* Tukey's test. *; P<0.05, **; P<0.01, ***; P<0.001: statistical differences in comparison to the diabetic control group, NC; Normal control, N+VAE; Normal rats subjected to VAE treatment, DC; Diabetic control, and D+VAE; Diabetic rats subjected to VAE treatment.

Fig.S3: Effect of VAE on blood glucose levels in normal and experimental rats. Bars represent the mean ± SD of eight rats per group. Evaluation was performed by two-way ANOVA followed by *post hoc* Tukey's test. *; P<0.05, **; P<0.01, ***; P<0.001: statistical differences in comparison to the diabetic control group, NC; Normal control, N+VAE; Normal rats subjected to VAE treatment, DC; Diabetic control, and D+VAE; Subjected to VAE treatment.

Fig.54: Effect of VAE on body mass gain in normal and experimental rats. Bars represent the mean ± SD of eight rats per group. Evaluation was performed by two-way ANOVA followed by *post hoc* Tukey's test. *; P<0.05, **; P<0.01, ***; P<0.001: statistical differences in comparison to the diabetic control group, NC; Normal control, N+VAE; Normal rats subjected to VAE treatment, DC; Diabetic control, and D+VAE; Diabetic rats subjected to VAE treatment.