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Regularized machine learning models
Consider the general linear regression model

yi = b0+ ∑
k

bj xij + εj

              
                          

                           j=1

where yi (i=1,…, n; n is the sample size) is the ith 
observation of the response variable, x

ij
 is the ith 

observation of the jth covariate ((j=1,…, k), bj's), are the 
regression coefficients, εj are i.i.d. random error terms 
which εj~N(0, σ2). The ordinary least squares estimator of 
b=(b0 ,b1, …, bp)′, is obtained by minimizing the residual 
sum of squares (RSS), i.e.,

bols= 
argmin

 ∑
n

(yi - b0 -∑
k

bjxij)
2
,

           b         i=1                     j=1

Regularized machine learning (RML) models avoid the 
overfitting problem by penalizing the model complexity 
and adding a nonnegative regularization term to the log-
likelihood function and, consequently, shrink the values 
of regression coefficients (1, 2). 

RML= RSS+ λ ω (b)

Where λ ω(b) is the regularization term. As the amount 
of shrinkage is controlled by the regularization parameter 
λ ≥ 0, choosing  λ is an essential part of model fitting. A 
larger value of λ, leads to a greater amount of shrinkage. 
This study used a 10-fold Cross-validation method to 
select the optimal λ value for our models. Considering 
several regularization terms that have been previously 
proposed (1, 3-6), we applied five popular regularized 
machine learning models to select relevant features 
for MetS predicting models include the least absolute 
shrinkage and selection operator (LASSO) (1) , ridge 
regression (RR) (3), elastic net (ENET) (6), adaptive 
LASSO (aLASSO) (5), and adaptive elastic-net (aENET). 
Supplementary table 1 shows the penalty factors and 
features of applied methods in the present study.
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Table S1: Penalty factors and features of regularized machine learning methods

Models  λ Penalty factor (ω(b)) Features 

LASSO

λ ∑
k

|bj |

        
j=1

Perform variable selection by shrinking some predictor coefficients to be 
exactly zero.

Improve the interpretability of the model.

Does not capture any grouping effect.

May fail when there is a strong correlation between predictors.

Ridge

λ ∑
k

 bj 
2

        
j=1

Shrinks the coefficients’ estimates towards zero but does not force them to 
be exactly zero. 

Does not perform variable selection, meaning all features are retained even 
if they are not important.

Helps in reducing the impact of multicollinearity among predictors.

Works well when there are many relevant features.

ENET

λ1 ∑
k

|bj | + λ2 ∑
k

 bj
2

         
j=1                    j=1

Combines the strengths of LASSO and ridge regression.

Simultaneously perform variable selection and shrink coefficients of 
correlated variables.

Works well when there are many relevant features and some of them are 
highly correlated.

Can handle correlated predictors better than LASSO.

aLASSO

λ ∑
k

|wj bj |

        
j=1

Have all the good properties of the lasso.

Simultaneously estimate and variable selection.

Has the oracle properties.

This method used adaptive weights for penalizing different coefficients to 
overcome the inconsistency of LASSO.

aENET

λ1 ∑
k

|wj bj | + λ2 ∑
k

 wj bj
2

         
j=1                          j=1

Has the oracle properties.

Can handle the collinearity.

Combines the advantages of both elastic net and adaptive LASSO.

LASSO; Least absolute shrinkage and selection operator, ENET; Elastic Net, aLASSO; Adaptive LASSO, and aENET; Adaptive Elastic Net.
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Fig.S1: ROC curves for penalized and logistic regression methods. A. ROC curve for logistic regression, B. ROC curve for LASSO regression, C. ROC curve 
for ridge regression, D. ROC curve for elastic net model, E. ROC curve for adaptive lasso model, F. ROC curve for adaptive elastic net model; ROC; Receiver 
operating characteristics, AUC-ROC; Area under the ROC curve, LASSO; Least absolute shrinkage and selection operator, EN; Elastic net, and FPR; False 
positive rate. The adaptive EN model shows a higher AUC-ROC curve.
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Fig.S2: Precision-recall (PR) curves for penalized and logistic regression methods. A. PR curve for logistic regression, B. PR curve for LASSO regression, C. 
PR curve for ridge regression, D. PR curve for elastic net model, E. PR curve for adaptive lasso model, F. PR curve for adaptive elastic net model. AUC-PR; 
Area under the precision-recall curve, LASSO; Least absolute shrinkage and selection operator, EN; Elastic net, and FPR; False positive rate. The adaptive 
EN model shows a higher AUC-PR curve.
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