## **Supplementary Information for**

## An Integrative Analysis of The Micro-RNAs Contributing in Stemness, Metastasis and B-Raf Pathways in Malignant Melanoma and Melanoma Stem Cell

Parisa Sahranavardfard, Ph.D.<sup>1</sup>, Zahra Madjd, M.D., Ph.D.<sup>2</sup>, Amirnader Emami Razavi, M.D.<sup>3</sup>, Alireza

Ghanadan, M.D.<sup>3, 4</sup>, Javad Firouzi, M.Sc.<sup>1</sup>, Pardis Khosravani, M.Sc.<sup>1</sup>, Saeid Ghavami, Ph.D.<sup>5, 6, 7, 8\*</sup>,

Esmaeil Ebrahimie, Ph.D.<sup>9, 10\*</sup>, Marzieh Ebrahimi, Ph.D.<sup>1\*</sup>

1. Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran

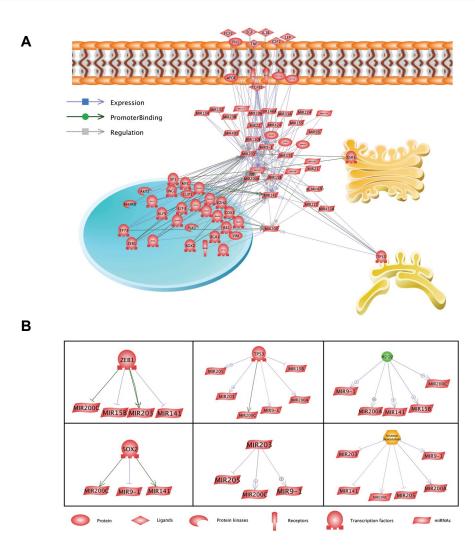
2. Department of Pathology, Iran University of Medical Sciences, Tehran, Iran 3. Iran National Tumor Bank, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran 4. Department of Dermatopathology, Razi Skin Hospital, Tehran University of Medical Sciences, Tehran, Iran 5. Department of Human Anatomy and Cell Sciences, University of Manitoba, Manitoba, Canada 6. Biology of Breathing, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada

 Biology of Breatining, Children Hospital Research Institute of Manifolda, University of Manifolda, Winnipeg, Canada
 7. Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
 8. Research Institute in Oncology and Hematology, Cancer Care Manifoba, University of Manifoba, Winnipeg, Canada
 9. School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia
 10. Genomics Research Platform, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, Australia

\*Corresponding Addresses: Department of Human Anatomy and Cell Sciences, University of Manitoba, Manitoba, Canada

School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia

Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran


Emails: saeid.ghavami@umanitoba.ca, esmaeil.ebrahimie@adelaide.edu.au, mebrahimi@royaninstitute.org

| 10 <sup>1</sup>                                                           |                                                                               |                                                                                          |                                                                 |                                                                     | <ul> <li>NORMAL</li> <li>TUMOR</li> </ul>                     |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------|
| microRNA expression(Log 10)                                               | · ·   54 24 4-4-4<br>2019 2 8 •••                                             |                                                                                          | ······································                          | ******<br>******                                                    | ******<br>******************************                      |
|                                                                           |                                                                               |                                                                                          |                                                                 |                                                                     |                                                               |
| 10 <sup>-7</sup>                                                          | miR-205                                                                       | miR- 203                                                                                 | miR- 141                                                        | miR-15b                                                             | miR- 9                                                        |
| SNAIL                                                                     | miR-205                                                                       | miR- 203<br>+                                                                            | miR- 141<br>-                                                   | miR-15b                                                             | miR- 9<br>+                                                   |
|                                                                           | miR-205<br>-<br>+                                                             | miR- 203<br>+<br>+                                                                       | miR- 141<br>-<br>+                                              | miR-15b<br>-                                                        | miR- 9<br>+<br>-                                              |
| SNAIL<br>ZEB<br>CDH1                                                      | miR-205<br>-<br>+<br>-                                                        | miR- 203<br>+<br>+<br>-                                                                  | miR- 141<br>-<br>+<br>-                                         | miR-15b<br>-<br>-                                                   | miR- 9<br>+<br>-<br>+                                         |
| SNAIL<br>ZEB<br>CDH1<br>SMAD2/3                                           | miR-205<br>-<br>+<br>-                                                        | miR- 203<br>+<br>+<br>-<br>+                                                             | miR- 141<br>-<br>+<br>-                                         | miR-15b<br>-<br>-<br>-<br>+                                         | miR- 9<br>+<br>-<br>+<br>-                                    |
| SNAIL<br>ZEB<br>CDH1<br>SMAD2/3<br>CCND1                                  | miR-205<br>-<br>+<br>-<br>-<br>-                                              | miR- 203<br>+<br>+<br>-<br>+<br>-                                                        | miR- 141<br>-<br>+<br>-<br>-                                    | miR-15b<br>-<br>-<br>+<br>+                                         | miR- 9<br>+<br>-<br>+<br>-<br>+<br>+                          |
| SNAIL<br>ZEB<br>CDH1<br>SMAD2/3<br>CCND1<br>SOX2                          | miR-205<br>-<br>+<br>-<br>-<br>-<br>-                                         | miR- 203<br>+<br>+<br>+<br>-<br>-<br>+<br>-                                              | miR- 141<br>-<br>-<br>-<br>-<br>-                               | miR-15b<br>-<br>-<br>+<br>+<br>-                                    | miR- 9<br>+<br>-<br>+<br>+<br>+<br>+<br>+                     |
| SNAIL<br>ZEB<br>CDH1<br>SMAD2/3<br>CCND1<br>SOX2<br>POU5F1                | miR-205<br>-<br>+<br>-<br>-<br>-<br>-<br>-<br>-                               | miR- 203<br>+<br>+<br>-<br>-<br>-<br>-                                                   | miR- 141<br>-<br>-<br>-<br>-<br>-<br>+<br>-                     | miR-15b<br>-<br>-<br>+<br>+<br>-<br>-                               | miR- 9<br>+<br>-<br>+<br>-<br>+<br>+<br>+<br>-                |
| SNAIL<br>ZEB<br>CDH1<br>SMAD2/3<br>CCND1<br>SOX2<br>POU5F1<br>BRAF        | miR-205<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                          | miR- 203<br>+<br>+<br>-<br>-<br>-<br>-<br>-                                              | miR- 141<br>+<br>-<br>-<br>-<br>-<br>+<br>-                     | miR-15b<br>-<br>-<br>+<br>+<br>-<br>-<br>-                          | miR- 9<br>+<br>-<br>+<br>+<br>+<br>+<br>+<br>+<br>+           |
| SNAIL<br>ZEB<br>CDH1<br>SMAD2/3<br>CCND1<br>SOX2<br>POU5F1<br>BRAF<br>ERK | miR-205<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-           | miR- 203<br>+<br>+<br>-<br>-<br>-<br>-<br>-<br>+                                         | miR- 141<br>+<br>-<br>-<br>-<br>-<br>+<br>-<br>-                | miR-15b<br>-<br>-<br>+<br>+<br>-<br>-<br>-<br>+                     | miR- 9<br>+<br>-<br>+<br>+<br>+<br>+<br>+<br>+<br>-<br>+<br>- |
| SNAIL<br>ZEB<br>CDH1<br>SMAD2/3<br>CCND1<br>SOX2<br>POU5F1<br>BRAF        | miR-205<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | miR- 203<br>+<br>+<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | miR- 141<br>+<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | miR-15b<br>-<br>-<br>+<br>+<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | miR- 9<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+ |

**Fig.S1:** Expression pattern of differentially miRNAs expressed with direct validated targets. According to miRTarBase 6.0 validated data, miR-205, -203, -141, -15b, -9 had at least one target in the EMT pathway: miR-205 and miR-141 target *ZEB*; miR-203 targets *ZEB*, *SNAIL*, and *SMAD2*; miR-15b targets *SMAD2*; miR-9 targets *CDH1* and *SNAIL*. Also, miR-141 inhibits *POU5F1* and miR-9 directly targets *SOX2* as stemness genes. In addition, miR-9, -15b, and -203 are involved in the BRAF pathway by directly targeting *BRAF* or one of its downstream factors, like *ERK*, *MEK* or *CCND1*.

| Table S1: Different algorithms of attribute | weightings |
|---------------------------------------------|------------|
|---------------------------------------------|------------|

| Number | Algorithm model                    | Definition                                                                                                                                                           |
|--------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.     | principle component analysis (PCA) | Taking the coefficients of the first component of PCA as feature weights                                                                                             |
| 2.     | Deviation                          | Creating weights from the standard deviations of all attributes                                                                                                      |
| 3.     | Relief                             | Measuring the relevance of features by sampling examples and comparing the value of the current feature for the nearest example of the same and of a different class |
| 4.     | Support vector machine (SVM)       | Taking the coefficients of the normal vector as weight of features                                                                                                   |
| 5.     | Gini index                         | Calculating the relevance of an attribute by computing the Gini index of the class distribution                                                                      |
| 6.     | Rule                               | Calculating the relevance of an attribute by computing the error rate of a OneR Model on the example set without this feature                                        |
| 7.     | Chi Squared statistic              | Calculating the relevance of an attribute by computing the value of the chi-squared statistic with respect to the class attribute                                    |
| 8.     | Information gain                   | Calculating the relevance of an attribute by computing the information gain in class distribution                                                                    |
| 9.     | Uncertainty                        | Calculating the relevance of an attribute by measuring                                                                                                               |
|        |                                    | the symmetrical uncertainty with respect to the class                                                                                                                |
| 10.    | Information gain ratio             | Calculating the relevance of an attribute by computing the information gain ratio for the class distribution                                                         |



**Fig.S2:** Regulatory network analysis to find more effective miRNAs in melanoma progression. **A.** Based on regulator discovery, the selected miRNAs were modulated by most intracellular components, including the nucleus, Golgi apparatus, endoplasmic reticulum, and cell membrane and **B.** Main significant sub-networks enriched by differentially expressed miRNAs of melanoma and normal tissues. The common regulators were TP53 and histone deacetylase that regulated six of the seven selected miRNAs.

| Characteristic                         | Value      |
|----------------------------------------|------------|
| Age (Y, mean age ± standard deviation) | 59 ± 13.89 |
| Gender (%)                             |            |
| Female                                 | 25         |
| Male                                   | 75         |
| Tumor size (%)                         |            |
| ≤4.1 mm                                | 67         |
| >4.1 mm                                | 33         |
| Metastasis (%)                         |            |
| Yes                                    | 92         |
| No                                     | 8          |
| Dermal invasion (%)                    |            |
| Yes                                    | 67         |
| No                                     | 33%        |
| Local recurrence (%)                   |            |
| Yes                                    | 42         |
| No                                     | 33         |
| No data                                | 25         |
| Tumor-infiltrating lymphocytes (%)     |            |
| Absent                                 | 84         |
| Moderate                               | 8          |
| Brisk                                  | 8          |
| Margin involvement (%)                 |            |
| Yes                                    | 17         |
| No                                     | 83         |
| Breslow thickness (%)                  |            |
| Thin (≤1 mm)                           | 67         |
| Thick (>1 mm)                          | 33         |
| Lymph node involvement (%)             |            |
| Yes                                    | 67         |
| No                                     | 33         |

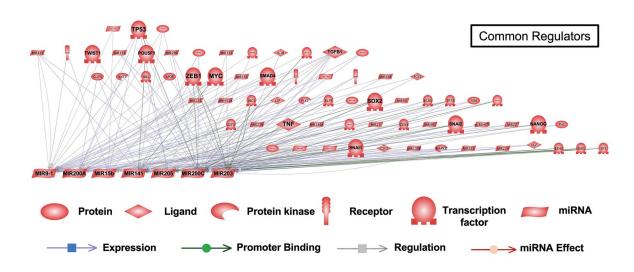
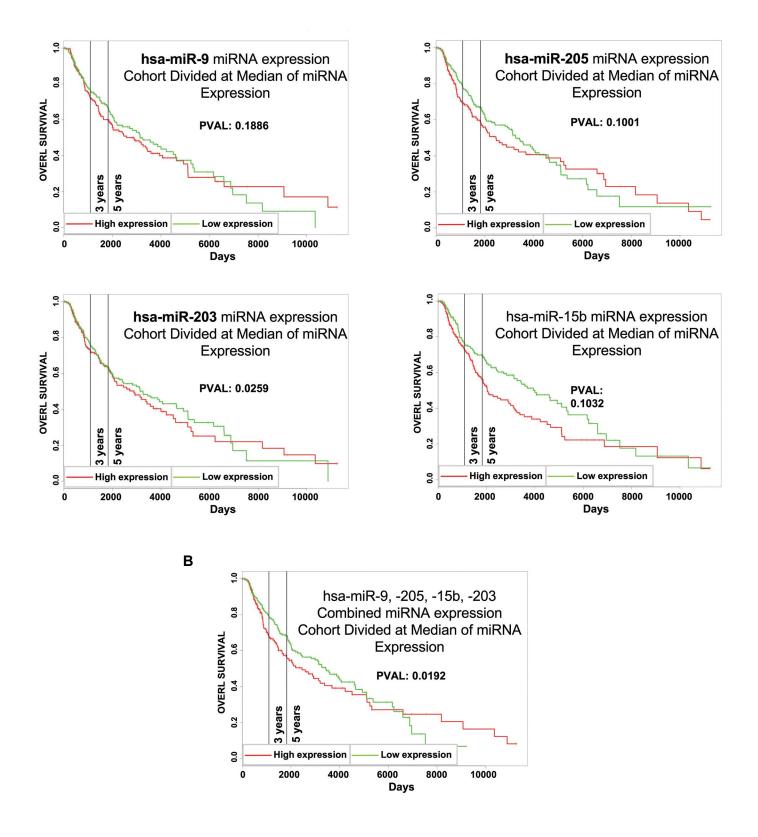




Fig.S3: Regulator discovery for differentially expressed miRNAs. Analysis of common regulator showed SOX2 and some of the main EMT markers, such as SNAI1, SNAI2, ZEB1, and TGFB1, as common regulators of significant miRNAs.

| Table S3: Melanoma sample characterization  |             |         |          |  |  |  |  |
|---------------------------------------------|-------------|---------|----------|--|--|--|--|
| Characteristic                              | Value       |         |          |  |  |  |  |
| Age (Y, mean age $\pm$ standard deviation ) | $65 \pm 12$ | 2.99    |          |  |  |  |  |
| Gender (%)                                  |             |         |          |  |  |  |  |
| Female                                      | 55          |         |          |  |  |  |  |
| Male                                        | 45          |         |          |  |  |  |  |
| Ethnicity (%)                               |             |         |          |  |  |  |  |
| Persian                                     | 30          |         |          |  |  |  |  |
| Azari                                       | 45          |         |          |  |  |  |  |
| Gilaki                                      | 15          |         |          |  |  |  |  |
| Lur                                         | 5           |         |          |  |  |  |  |
| Unknown                                     | 5           |         |          |  |  |  |  |
| Tumor size                                  |             |         |          |  |  |  |  |
| Tumor diameter (mm, mean $\pm$ SD)          | 30.61 =     | ± 18.47 |          |  |  |  |  |
| Tumor depth (mm, mean $\pm$ SD)             | 14.41 =     | ± 12.55 |          |  |  |  |  |
| Site of primary (%)                         |             |         |          |  |  |  |  |
| Upper limb and shoulder                     | 5           |         |          |  |  |  |  |
| Scalp and neck                              | 15          |         |          |  |  |  |  |
| Lower limb and hip                          | 45          |         |          |  |  |  |  |
| Other and unspecified parts of body         | 35          |         |          |  |  |  |  |
| Extent of discase $(9/)$                    | Yes         | No      | Unknown  |  |  |  |  |
| Extent of disease (%)<br>Bone invasion      | 5           |         |          |  |  |  |  |
|                                             |             | 65      | 25       |  |  |  |  |
| Perineural invasion                         | 10<br>10    | 65      | 30<br>30 |  |  |  |  |
| Dermal lymph invasion                       |             | 65      |          |  |  |  |  |
| Vascular invasion                           | 10          | 65      | 30       |  |  |  |  |
| Grade (%)                                   |             |         |          |  |  |  |  |
| Ι                                           | 5           |         |          |  |  |  |  |
| II                                          | 30          |         |          |  |  |  |  |
| III                                         | 20          |         |          |  |  |  |  |
| IV                                          | 45          |         |          |  |  |  |  |
| Unknown                                     |             |         |          |  |  |  |  |
| Stage (%)                                   |             |         |          |  |  |  |  |
| II                                          | 65          |         |          |  |  |  |  |
| II<br>III/IV                                | 35          |         |          |  |  |  |  |
| 111/ L Y                                    | 55          |         |          |  |  |  |  |
| Donor status                                |             |         |          |  |  |  |  |
| Alive                                       | 50          |         |          |  |  |  |  |
| DECEASED                                    | 50          |         |          |  |  |  |  |

## TCGA Skin Cutaneous Melanoma [SKCM] DATA SURVIVAL MEASURE – OVERAL SURVIVAL



**Fig.S4:** The overall survival rate associated with miR-203, -205, -15b, and -9. **A.** The individual expression levels of miR-9 (P=0.1886), -205 (P=0.1001), and -15b (P=0.1032) were not associated with reduced overall survival of melanoma patients. **B.** The simultaneously expression of miR-203, -205, -15b, and -9 (P=0.0192). However, miR-203 (P=0.0259) alone and the simultaneously expression of miR-203, -205, -15b, and -9 (P=0.0192). However, miR-203 (P=0.0259) alone and the simultaneously expression of miR-203, -205, -15b, and -9 (P=0.0192) showed a significant association with reduced overall survival of patients. The PROGmiR tool was used for analysis of the melanoma expression data from the TCGA dataset, including 163 cases of skin cutaneous melanoma.

| Sample<br>Code | Age<br>(Y) | Gender | Ethnicity | Site of<br>primary         | Ulceration | Tumor<br>size (mm,<br>Diameter/<br>Depth) | Extent of disease                           | Pathological<br>T | Pathological<br>N | Clinical<br>M | Grade | Donor statue |
|----------------|------------|--------|-----------|----------------------------|------------|-------------------------------------------|---------------------------------------------|-------------------|-------------------|---------------|-------|--------------|
| A00017         | 68         | М      | Persian   | Lower limb<br>and hip      | Yes        | (15/2)                                    | No                                          | T2b               | NX                | MX            | X     | DECEASED     |
| A00042         | 76         | М      | Persian   | Unspecified parts of body  | Yes        | (35/35)                                   | No                                          | T3                | NX                | MX            | IV    | ALIVE        |
| A00186         | 52         | F      | Gilaki    | Unspecified parts of body  | Yes        | (30/8)                                    | No                                          | T4a               | NX                | MX            | Π     | ALIVE        |
| A01650         | 55         | F      | Unknown   | Lower limb and hip         | No         | (35/35)                                   | Unknown                                     | T4a               | NX                | M0            | Ш     | ALIVE        |
| A01679         | 38         | F      | Azari     | Lower limb<br>and hip      | Yes        | (55/25)                                   | No                                          | T4b               | N0                | M0            | Х     | ALIVE        |
| A01732         | 63         | М      | Azari     | Scalp and neck             | No         | (40/35)                                   | No                                          | T4a               | NX                | M0            | III   | ALIVE        |
| A00151         | 62         | F      | Azari     | Lower limb<br>and hip      | Yes        | (10/5)                                    | Dermal<br>lymph and<br>vascular<br>invasion | T4b               | NX                | MX            | П     | ALIVE        |
| A00320         | 74         | F      | Gilaki    | Scalp and neck             | No         | (9/4)                                     | Perineural invasion                         | T3a               | NX                | M0            | Null  | ALIVE        |
| A00678         | 82         | М      | Azari     | Unspecified parts of body  | Unknown    | (80/-)                                    | Unknown                                     | T4a               | N2b               | Mla           | IV    | DECEASED     |
| A00856         | 48         | F      | Azari     | Upper limb<br>and shoulder | No         | (15/-)                                    | Unknown                                     | TX                | N0                | M0            | Х     | ALIVE        |
| A01185         | 47         | М      | Azari     | Lower limb and hip         | Yes        | (20/3)                                    | No                                          | T3b               | N3                | M0            | IV    | ALIVE        |
| A01358         | 83         | F      | Gilaki    | Unspecified parts of body  | Yes        | (25/6)                                    | No                                          | T4b               | N0                | МХ            | III   | DECEASED     |
| A01371         | 80         | F      | Azari     | Lower limb and hip         | Yes        | (55/3)                                    | Unknown                                     | T3b               | NO                | M0            | III   | DECEASED     |
| A00786         | 82         | F      | Persian   | Unspecified parts of body  | No         | (10/9)                                    | Perineural invasion                         | T4a               | NO                | МХ            | Х     | DECEASED     |
| A01192         | 52         | F      | Azari     | Lower limb<br>and hip      | No         | (-/13)                                    | Unknown                                     | T4a               | N3                | МХ            | IV    | DECEASED     |
| A00743         | 65         | М      | Persian   | Unspecified parts of body  | Yes        | (-/-)                                     | Bone invasion                               | TX                | N2                | МХ            | Х     | DECEASED     |
| A01483         | 65         | М      | Persian   | Lower limb<br>and hip      | No         | (30/30)                                   | Dermal<br>lymph and<br>vascular<br>invasion | T4                | NX                | МХ            | Х     | DECEASED     |
| A01556         | 70         | М      | Azari     | Unspecified parts of body  | Yes        | (30/10)                                   | No                                          | T2                | NX                | MX            | Null  | ALIVE        |
| A00871         | 66         | F      | Lur       | Lower limb<br>and hip      | No         | (35/18)                                   | No                                          | T4a               | NX                | MX            | III   | DECEASED     |
| A00278         | 72         | М      | Persian   | Scalp and neck             | Null       | (22/4)                                    | Unknown                                     | T3a               | N2b               | MX            | Null  | DECEASED     |

| Table S4: Clinical and Laborato | ry characteristics of patient samples |
|---------------------------------|---------------------------------------|
|---------------------------------|---------------------------------------|

F; Female, M; Male, T; Tumor, N; Node, and M; Metastasis.

| Weight_<br>PCA | Weight_<br>SVM | Weight_<br>Relief | Weight_<br>Uncertainty | Weight_<br>Gini Index | Weight_Chi<br>Squared | Weight_<br>Deviation | Weight_<br>Rule | Weight_Info<br>Gain Ratio | Weight_<br>Info Gain | Attribute | Number of<br>attribute<br>weighting models<br>selected the<br>microRNAs as<br>important (cut<br>off 0.9) |
|----------------|----------------|-------------------|------------------------|-----------------------|-----------------------|----------------------|-----------------|---------------------------|----------------------|-----------|----------------------------------------------------------------------------------------------------------|
| 0.0            | 0.2            | 0.2               | 0.9                    | 1.0                   | 0.4                   | 0.0                  | 0.4             | 1.0                       | 1.0                  | miR-205   | 4                                                                                                        |
| 0.0            | 1.0            | 1.0               | 1.0                    | 0.3                   | 1.0                   | 0.0                  | 0.5             | 0.4                       | 0.3                  | miR-15b   | 4                                                                                                        |
| 1.0            | 0.4            | 0.0               | 0.1                    | 0.2                   | 0.0                   | 1.0                  | 0.9             | 0.0                       | 0.2                  | miR-221   | 3                                                                                                        |

Table S5: Attribute weighting models select the most important microRNAs linked to tumor/normal status, based on 10 different statistical approaches

PCA; Principal component analysis and SVMs; Support vector machines.