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Abstract
Objective: The induction of immunity against cancer stem cells (CSCs) can boost the efficiency of cancer vaccines. 
Heat shock proteins (HSPs) are required for the successful activation of anti-tumor immune responses. Glycoprotein 
96 (gp96) is a well-known HSP that promotes the cross-presentation of tumor antigens. The aim of the present study 
was to optimize the temperature for induction of gp96 in grade 3 breast cancer spheres. 
Materials and Methods: In the experimental study, CSCs were enriched from breast tumor tissue samples and 
cultured in DMEM-F12 with epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), B27, and bovine 
serum albumin (BSA) for 22 days. The expression level of CD24 and CD44 as CSC markers was measured by flow 
cytometry in secondary mammospheres, and the expression of NANOG, SOX2, and OCT4 genes in CSCs was also 
analyzed using the real-time polymerase chain reaction (PCR). To find the optimal temperature regulation of gp96, 
the mammosphere was incubated at different temperatures for 1 hour, and gp96 expression was measured using the 
western blotting assay.
Results: Primary mammospheres were obtained after seven days of culture, and secondary spheres formed 22 days 
after passage. Flow cytometry analysis showed that cells with CD24- CD44+ phenotype were enriched in the culture 
period (from 2.6% on day 1 to 32.6% on day 22). Real-time PCR indicated that OCT4, NANOG, and SOX2 expression 
in mammospheres were increased by 3.8 ± 0.6, 17.8 ± 0.6, and 7.7 ± 0.8 fold respectively in comparison to the MCF-7 
cell line. Western blot analysis showed that gp96 production was significantly upregulated when mammospheres were 
incubated at both 42°C and 43°C in comparison to the control group. 
Conclusion: Altogether, we found that heat-induced upregulated expression of gp96 in CSCs enriched mammospheres 
from breast tumor tissue might be used as a complementary procedure to generate more immunogenic antigens in 
immunotherapy settings.
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Introduction

 Four decades ago, the cancer stem cell (CSC) concept 
was proposed. It was stated that tumor growth, like the 
renewal of healthy tissues, is fueled by small numbers 
of so-called stem cells. It has gradually become clear 
that many tumors harbor CSCs in dedicated niches, 
and their identification has not been as obvious as was 
initially hoped. Recently developed lineage tracing 
has provided insights into CSC therapeutic response.

Breast cancer is the most common female neoplastic 
malignancy and the most important cause of female 
mortality in the world (1). Although this malignancy’s 
highest incidence is in developed countries, studies 
showed that its incidence in developing countries has 
an increasing trend, and patients have a shorter life 
expectancy (2). Most of the deaths associated with 
breast cancer are due to metastasis and multiple drug 

resistance (3). Studies on the tumor microenvironment 
have revealed a rare cancer cell population with 
stemness features that seems to be the leading cause of 
the malignancy. This population is called CSCs, and 
they have the ability to self-renewal and differentiation 
into other progenies of cancer cells (4).

CSCs first were detected in acute myeloid leukemia 
(5), however, their footprint was discovered in all types 
of cancers later (6-9). They are assumed to be responsible 
for a tumor’s main malignant characteristics, including 
invasion, metastasis, drug resistance, and relapse. 
Although CSCs can be distinguished by surface 
markers (e.g. CD24) and expression of stemness genes 
(e.g. OCT4, NANOG, SOX2), efforts to derivate a 
pure cell line of CSCs from tumor specimens have 
failed till now (10). Nevertheless, it has been proved 
that the culture of tumor cells in non-adherent vessels 
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would form spheroids, which are CSCs enriched, so, 
currently, tumor-derived spheres would prepare the most 
available models for CSCs examinations (11).

Heat shock proteins (HSPs) are necessary molecular 
chaperones that play an essential role in cells. They 
also play a crucial role in immunizing against tumors 
by interfering with the function of professional antigen-
presenting cells (APCs), T lymphocytes, and NK cells 
(12-16). Hsp90B1 (gp96) is a type of HSP that plays a 
vital role in directing and delivering antigens through 
MHC class 1 and inducing CD8+ T cells response. This 
role of HSPs has been used as a basis for clinical trials to 
develop anticancer vaccines (17, 18).

Despite the efforts that have been made to develop the 
cancer vaccines, reaching therapeutic success still is still 
far-fetched. In recent years, immunotherapy methods 
have hopefully increased the survival of patients (19). To 
improve the efficacy of these new treatments, boosting the 
immune response against cancer cells, specifically CSCs, 
is of the utmost importance. Therefore, upregulating 
the expression of HSPs in CSCs seems to increase the 
immunogenicity of these cells, and HSP-upregulated CSCs 
would be a better tumor antigen source for immunization 
and cancer vaccine production. In this study, we tried to 
set up an optimized protocol for the derivation of CSCs-
enriched spheres from tumor tissue of breast cancer 
(which is called mammospheres) and upregulation of 
glycoprotein 96 (gp96) in these cells. 

Materials and Methods
In the experimental study, the optimal temperature 

for induction of gp96 in grade 3 breast cancer spheres 
was investigated using mammosphere generation, 
immunohistochemistry, flow cytometry, real-time reverse 
transcription polymerase chain reaction (RT-PCR), and 
western blot techniques.

Preparing tumor sample and generation of 
mammospheres

Several biopsy samples of tumor tissue were obtained from 
a female patient with breast cancer during mastectomy and 
stored in sterile containers containing DMEM/F12 medium 
(Gibco, USA) with streptomycin-penicillin antibiotics (Sigma, 
USA), then delivered to the lab. Written consent was obtained 
from three patients before the surgery for using their tissue 
samples in the research. Approval of the ethics committee 
of Urmia University of Medical Sciences was obtained in 
advance (P6/97/4/25493). At least three tumor samples were 
applied to successfully generate mammospheres and the gp94 
induction process as described below.

Breast tumor tissues were first minced mechanically by a 
scalpel and then digested enzymatically using collagenase 
type IV for 18 hours. Cells obtained from the digested 
tissue were cultured in 24-well plates (Biofil, China) 
coated with a thin layer of 1.5% agarose solution, in a low 
glucose DMEM (Dulbecco’s Modified Eagle Medium) 
medium supplemented with epidermal growth factor 

(EGF, 20 ng/ml), basic fibroblast growth factor (bFGF, 
20 ng/ml), B27 (2%), bovine serum albumin (BSA, 0.5 
mg/ml) and penicillin-streptomycin at 37ºC and 5% CO2 
(20). The culture medium was refreshed every two days, 
and primary spheres were harvested on day 7, single cells 
of each sphere were then transferred into new 24-well 
plates to form secondary spheres which were then used to 
perform relevant tests on day 22.

Immunohistochemistry
For immunohistochemical (IHC) analysis tissue 

sections were cut at 6 µm thickness, mounted on slides, 
and antigen retrieval was performed. Endogenous 
peroxidase activity was blocked by immersing the slides 
in 1.0% H2O2, and 0.1% NaN3 in tris-buffered saline 
(TBS, Sigma, Germany) for 10 minutes. Nonspecific 
antibody binding was inhibited by incubating the 
sections in 4% commercial nonfat skim milk powder 
(Sigma, Germany) in TBS for 15 minutes; the slides 
were transferred to a humidified chamber and incubated 
with primary anti ER (2.5 µg/ml), PR (2.5 µg/ml) and 
Herr-2/neu (5 µg/ml) antibodies (Abcam, UK) overnight 
at room temperature. The sections were washed by 
TBS and incubated with biotinylated goat anti-mouse 
immunoglobulins (Abcam, UK) for 45 minutes and 
then with streptavidin-horseradish peroxidase conjugate 
(Abcam, UK) for 15 minutes. Antigenic sites were 
identified using 0.05% 3,3-diaminobenzidine with H2O2 
(Sigma, Germany) as substrate and were then lightly 
counterstained with hematoxylin before being examined 
with light microscopy (21).

Flow cytometry 
To confirm CSCs enrichment in mammospheres, the 

flow cytometry technique was used to determine the 
percentage of CSCs population in trypsinized secondary 
mammospheres on the 22nd day of culture. For this 
assessment, CD44+CD24- cells were considered as CSCs, 
and the percentage of this population was compared with 
single cells isolated from digested tumor tissue on the 
first day of culture. 

Real-time reverse transcription polymerase chain 
reaction

Real-time RT-PCR was carried out according to the method 
described by Park et al. (22). Briefly, single cells of trypsinized 
secondary mammospheres were used for total RNA extraction by 
a commercially available kit (Qiagen, Valencia, CA, USA). Real-
time RT-PCR was then performed on the synthesized cDNA to 
evaluate the expression level of stemness genes including OCT4, 
NANOG, and SOX2, resultant cDNA amplified by Taq DNA 
polymerase (Invitrogen, Germany) in a Rotor-gene 3000 thermal 
cycler device (Corbett, Australia). The Syber Green probe (Qiagen, 
Germany) was used for the detection of DNA amplification signals. 
The expression level of each gene was normalized to the GAPDH 
expression as a housekeeping gene, and breast cancer cell line 
(MCF7) as a control to calculate the relative expression (2-ΔΔCt) of 
stemness genes. 
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Western blot
To induce upregulation of gp96 expression, mammospheres 

were incubated for 60 minutes at 42ºC and 43ºC in experimental 
groups and at 37ºC in the control group; these spheres were 
then trypsinized, and single cells were used for Western blot 
analysis. Cells were lysed with lysing buffer (50 mM Tris-
HCl, pH=7.5, 150 mM NaCl, 0.5% sodium deoxycholate, 
1% NP-40) supplemented with complete protease inhibitors 
(Roche Applied Science, Mannheim, Germany). Cell lysates 
(20 mg) were separated by electrophoresis on 10% sodium 
dodecyl-sulfate (SDS)-polyacrylamide gel and transferred 
to a nitrocellulose membrane. The blot was blocked with 
TBST (20 mM Tris-HCl, pH=7.6, 136 mM NaCl, and 0.1% 
Tween-20) containing 5% skim milk and then incubated with 
primary antibody against gp96 (2 µg, ml) and Actin (as a 
housekeeping protein, Santa Cruz, USA) at 4ºC overnight. 
The next day, after washing with TBST, the membrane was 
incubated with HRP-conjugated secondary antibody for 1 
hour at room temperature. The bands were amplified using a 
chemiluminescent solution and photographed with the ECL 
kit (GE/Amersham Healthcare, UK) and Documentation Gel 
(SYNGENE, UK) (23).

Statistical analysis
Data from at least three independent experiments were 

expressed as means ± standard deviation, SD. Each data 
point of real-time PCR was run at least in triplicates and 
independent experiments were performed at least three 
times. Student’s t tests or ANOVA (SPSS, version 21, 
IBM, USA) were used to determine statistically significant 
differences and P<0.05 was considered to be statistically 
significant unless otherwise specified.

Results
Immunohistochemistry characteristics of the tumor 
sample

The histopathology report of the tumor biopsy indicated 
that the patients had undergone a stage IV, grade 3 invasive 
ductal carcinoma breast cancer (data not shown). Tumor size 
was 3.5×2cm and involvement of axillary lymph node was 
reported. IHC study showed that the tumor was triple positive 
for Estrogen, Progesterone, and Her2-neu receptors (Fig.1).    

Fig.1: Immunohistochemical analysis. Tumor specimen was stained 
immunohistochemically using anti ER, PR and Her-2/neu monoclonal 
antibodies. From left to right presents the expression of ER, PR, and Her-
2/neu receptors respectively (scale bar: 100 µm). 

Tumor-derived mammospheres generation
The culture of tumor single cells with described 

protocol led to the formation of spheres after 7 days. 
The morphology of spheres was similar to what has been 
previously reported. The sphere trypsinized and passaged 
into subsequent plates, which led to the formation of 
secondary mammospheres on day 22 (Fig.2).

Fig.2: Mammospheres derived from tumor tissue. A. Cells isolated 
from digestion of tumor tissue samples on the first day of culture, B. 
Primary mammospheres on the 7th day of culture, and C. Secondary 
mammospheres formed from the passage of primary mammospheres on 
the 22nd day of culture (scale bar: 100 µm).

Flow cytometric analysis of cancer stem cells in tumor-
derived spheres 

To determine the percentage of CSCs among other 
cancer cells, the population of CD44+CD24- cells as 
CSC phenotype was measured with flow cytometry. The 
percentage of CSCs on the first day of culture was 2.6%, 
whereas this population on the 22nd day of culture was 
33.2% in trypsinized mammospheres (Fig.3). 

Fig.3: Phenotypic characterization of cancer stem cells (CSCs) enriched 
mammospheres. A. Flow cytometric analysis of CSCs was carried out using 
anti CD24 and anti CD44 monoclonal antibodies. Forward and side scatter 
analysis of cells are shown. B. Cells with CD44+CD24- phenotype had a low 
percentage on the first day of culture, and C. But the population of these 
cells considerably increased in the 22nd day of culture in mammospheres.  

Stemness genes expression
Relative expression of stemness genes, including OCT-

4, NANOG, and SOX2 were measured in trypsinized 
mammospheres in comparison with the MCF-7 breast 
cancer cell line as the control by real-time RT-PCR. 
Relative expression of these genes was significantly 
higher in mammospheres, which was 3.83 ± 0.62 fold for 
OCT-4, 17.83 ± 0.6 fold for NANOG, and 7.73 ± 0.78 fold 
for SOX2 (P≤0.001, Fig.4).

A CB

A CB

A CB
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Fig.4: Stemness genes expressioin. Expression of OCT-4, NANOG, and 
SOX2 was meassured in single cells of mammospheres in comparison 
to MCF-7 cell line. The expression level of genes in the MCF-7 cells was 
considered as 1 and the expression fold of them in single cells of cultured 
mammospheres was reported (P<0.001).

Glycoprotein 96 expression

Incubation of mammospheres for a short time (60 
minutes) at 42°C and 43°C led to the upregulation 
of gp96 protein expression detected by Western blot. 
However, the viability of mammospheres did not decline 
after such incubation conditions. The sharpness of gp96 
bands at 42°C and 43°C incubated mammospheres were 
significantly higher than 37°C (P≤0.001), but they have no 
considerable difference from each other (Fig.5).

Fig.5: Expression levels of gp96 protein. Mammospheres were incubated 
in 42°C and 43°C as well as 37°C (control) for 1 hour and the expression of 
gp96 protein was measured using Western bloting test. Different letters 
indicate significant differences between mean values (P=0.03).

Discussion
CSCs are a group of cancerous cells within the tumor 

bulk with stem cell-like characteristics, including self-
renewal properties, due to which the term Tumor Initiating 
Cells (TIC) has been used for them (11). It seems that 
the stemness properties of CSCs could be an explanation 
for cancer recurrence and chemoresistance. Among the 
other described characteristics for CSCs, the expression 
of some markers like CD44, CD133, and CD24, and on 
the transcription level, the expression of SOX2, NANOG, 
and OCT4 is crucial (24).

One of the assays that can be applied to isolate CSCs, 
besides surface markers, is the Spheroid formation 
assay, which is based on the capability of these cells 
to generate multicellular three-dimensional (3D) 
spheres in vitro (25). So far, culture methods, including 
organotypic multicellular spheroid model, multicellular 
tumor spheroids, tissue-derived tumorspheres, and 
tumorspheres assay, have been developed (26). In this 
study, the tumorspheres assay was applied, which is 
based on dissociating tumor tissue to the suspension of 
single cells and culturing the obtained cellular suspension 
in a low adherent surface in a serum-free media which 
is supplemented with EGF and b-FGF growth factors to 
enrich CSCs. This condition can provide the establishment 
of spherical colonies. However, the formation of tumor 
structure cannot be fully mimicked by using this method 
(27). 

In the present study, we successfully achieved 
mammospheres from breast tumor tissue. Our tumor-
derived mammospheres were typical in morphology. We 
also passaged primary mammospheres to form secondary 
ones by trypsinization. The CSC population was enriched 
in mammospheres, which were 2.6% on the first day of 
culture compared to 33.2% on the 22nd day of culture. 

SOX2 gene belongs to the family of SRY-related high 
mobility group (HMG) which is located on chorormose 
3 and implicated in the cell development process 
by determining their fate and preserving stemness 
phenotype. It is well-known that SOX2 takes part in 
different molecular mechanisms and states of diseases 
including cancer. It has been shown that dysregulated and 
increased expression of SOX2 can impact proliferation, 
migration, invasion, resistance to apoptosis, and colony 
formation features in CSCs and tumor cells (28). NANOG 
is another master transcription factor of embryogenesis, 
located on chromosome 12, and engaged in conserving 
pluripotency and self-renewal potential in stem cells 
through the Insulin-like growth factor1 receptor (IGF1R) 
pathway. Overexpression of this transcription factor has 
been detected in different cancers, leading to inhibiting 
apoptosis and establishing chemoresistance (29). OCT-
4, also recognized as POU5F1, belongs to the POU 
family of transcription factors on chromosome 6, and 
along with NANOG and SOX2, plays a vital role in 
developmental pathways and tumorigenesis. Since the 
enhanced expression of these genes has been linked to 
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poor prognosis in patients with cancer and resistance to 
chemotherapy (30), in the present study, we analyzed their 
expression levels in ex vivo generated mammospheres and 
found that stemness genes, including OCT-4, NANOG, 
and SOX2, overexpressed in mammospheres compared to 
a regular breast cancer cell line (MCF-7).

Another purpose of this study was to optimize 
incubation conditions for the upregulation of HSPs in 
mammospheres, which would lead to an increase in the 
immunogenicity of CSCs for immunotherapy settings. 
We showed that incubation of mammospheres for 60 
minutes at 42-43°C upregulated GP96 protein expression 
(a member of the HSP90 family) without affecting the 
viability of mammospheres cells.

Homologous members of the HSP family are found 
in all parts of the cytosol, nucleus, mitochondria, 
endosomes, lysosomes, endoplasmic reticulum, 
intracellular membranes, and plasma membrane (31). 
Thus, HSPs isolated from tumor cells are potentially rich 
in tumor antigens (32). Given the role of HSP-peptide 
complexes in the activation and maturation of APCs, 
this complex may activate the polyclonal T lymphocyte 
response against tumor antigens. Under these conditions, 
even if the tumor loses some antigens under the selective 
pressure of the immune system, multiple T-cell clones 
will still be available to destroy the tumor cells (32, 33). 
The application of this approach makes it unnecessary to 
find tumor-specific antigens for each patient. Among the 
most critical tumor-derived HSPs facilitating the entry of 
antigenic peptides into MHC class I molecules are HSP70, 
and gp96 (17, 34, 35), however, the distribution of HSP 
molecules within the cell follows different prototypes. 
Gp96 molecules are typically present in the endoplasmic 
reticulum (36). Studies have shown that targeting HSPs, 
including HSP90, induces apoptosis in cancer cells (37), 
thus, it is necessary to evaluate the optimal conditions 
causing induction of these molecules to obtain the 
maximum potential of tumor antigenicity.

According to our findings, the best temperature and 
incubation time to induce maximal gp96 in breast cancer 
mammospheres were 42-43°C for 1 hour. In 1998, 
Madersbacher et al. (38) indicated that expression of 
HSP27 in LNCaP cells treated with heat shock from 43-
49°C for 60min could increase in a temperature-dependent 
manner, though this study was performed on a cell line and 
expression of HSP27 was the primary purpose. Schueller 
et al. in 2001 showed that in hepatocellular carcinoma 
cell line HepG2, treating cells at 41.8°C for 60 minutes, 
increased the expression level of HSP70 and HSP90, 
which could substantially escalate the immunogenicity of 
the tumor, as well as the immune response to heat-shocked 
HepG2 cells   Although the cell lines used in these two 
studies, were different, both of them had an epithelial 
origin and applying almost the same temperature resulted 
in rising expression levels of HSP70 and HSP90, which 
was consistent with the result of our study (39, 40).

This study had some limitations; first, the difficulty of 

preserving mammospheres for a more extended period 
without causing differentiation to investigate long term 
effects of heat treatment on the gp96 expression, Second, 
in this study, the samples were from the same patients 
of the same stage while obtaining tissue samples from 
patients of different stages could impact the percentage of 
the presence of CSCs and expression of gp96.  Moreover, 
we did not study the influence of higher temperatures than 
43°C on the structure and the expression of gp96. 

Conclusion 
In this study, we showed that tumor-derived 

mammospheres are CSCs-enriched, and the expression 
level of stemness genes is higher than regular breast 
cancer cell lines. It was also revealed that incubation of 
these mammospheres at a temperature between 42-43°C 
for 60 minutes would upregulate gp96 protein expression 
and make mammospheres a potent tool for preparing more 
immunogenic tumor antigens for use in immunotherapy 
modalities.
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