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Abstract
Objective: Cancer stem cells (CSCs) have important roles in survival and chemoresistance. These cells are commonly
recognized with CD44 and CD24 markers. In this study, we aimed to analyze the effects of mtDNA content on cell surface
positivity for anti-CD24 and anti-CD44 antibodies and chemoresistance level in AGS, HGC-27 and MKN-45 gastric cancer
(GC) cell lines and to determine a setpoint for mtDNA copy for each cell line.

Materials and Methods: In this experimental study, we initially decreased mtDNA levels in AGS, HGC-27 and MKN-45 by EtBr
treatment. This depletion was confirmed with quantitative polymerase chain reaction (QPCR). Changes in cell surface positivity
for anti-CD24 and anti-CD44 antibodies in control and mtDNA-depleted AGS, HGC-27 and MKN-45 were then analyzed with
flow cytometry. Changes in chemoresistance (5-FU and cisplatin) were analyzed for all cell lines. The relationship between
mtDNA content and cell surface positivity for CD24 and CD44 markers was examined.

Results: The highest CD44 positivity was found in HGC-27 and MKN-45 plow cells which had 33-40% mtDNA content
of control cells, however, CD24 positivity decreased with mtDNA depletion in all cell lines. The highest chemoresistance
levels were found in all plow cells. mtDNA-recovered (i.e. reverted) HGC-27 and MKN-45 cells partially maintained their
increased chemoresistance while reverted AGS cells did not maintain an increased level of chemoresistance.

Conclusion: mtDNA depletion triggers chemoresistance in cancer cell lines and is correlated with increase and decrease of
CD44 and CD24 positivity respectively in HGC-27 and MKN-45 GC cell lines. A mtDNA content above or below the identified

setpoint (33-40% of that in control cells), results in the decrease of CD44 positivity and chemoresistance levels.
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Introduction

Inrecent years, there has been progress in treating gastric
cancer (GC) with the widespread use of new surgical
techniques for tumor resection and lymph node dissection.
With the development of adjuvant chemotherapy and
targeted molecular therapies, condition of patients have
improved significantly (1). Although the incidence of GC
has declined in recent years, it still remains the fifth most
common cancer in the world. Patients with inoperable,
metastatic or recurrent disease have very low survival
rate, even after palliative cytotoxic chemotherapy (2).

Cancer stem cells (CSCs), which have roles in survival and
chemoresistance, are commonly analyzed according to the
expression of CD44 and CD24 markers (3). CD44 is a cell
surface glycoprotein and an adhesion molecule which provides
signal transduction through cell-cell communication. CD44
has several functions in migration, adhesion and signalization
(4). The expression of CD44 was found to be correlated with
survival, tumor size, stage and metastasis in GC (5). CD44
is also a GC stem cell marker and not only CD44" GC cells
were found to be chemoresistant, but the expression level of

CD44 is associated with the onset and progression of gastric
tumors (6, 7).

CD24, a cell surface protein linked to glycosyl-
phosphotidyl-inositol, is a heat-stable antigen which is
heavily glycosylated and involved in cell-cell and cell-
matrix interactions (8). CD24 overexpression can inhibit
an anti-apoptotic signaling pathway in CD44" tumor cells
and accelerate apoptosis as an answer to DNA damage
(9). CD24 is also an important diagnostic and prognostic
marker of cancer given its expression in many tumor types.
In some types of cancer, such as breast cancer, CSCs have
decreased CD24 expression (10). However, in certain
tumor types, such as nasopharyngeal, it has been suggested
as a CSCs marker (11). Accordingly, the status of CD24 as
a CSC marker remains vague when compared with CD44.

mtDNA depletion is a common event in GC, which
may induce CD44 expression in cancer cells (12-14).
This depletion has been shown to induce the generation
of CSCs, invasion and metastasis, and expression of
epithelial-mesenchymal transition (EMT) markers. In
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addition, it promotes pro-survival and anti-apoptotic
pathways which may lead to chemoresistance (13, 15, 16).
In hepatocellular carcinoma and breast cancer, increased
expression of antioxidant enzymes such as glutathione
peroxidase and manganese superoxide dismutase has
been observed, which may increase chemoresistance via
altered redox-antioxidant regulation (17-19). Although it
is known that mtDNA depletion increases chemoresistance
(20) and CD44 positivity (13) in cancer cells, the level
of mtDNA depletion that causes the greatest increase in
chemoresistance and CD44 expression as a setpoint has
not yet been determined.

We therefore aimed to analyze the effects of mtDNA
content on cell surface positivity for CD44 and CD24, and
chemoresistance (5-FU and cisplatin) in AGS, HGC-27
and MKN-45 GC cell lines. We show that the observed
setpoint of mtDNA level results in the highest CD44
positivity (as a CSC marker) and chemoresistance to both
5-FU and cisplatin.

Materials and Methods

In this experimental study, AGS (a non-metastatic
GC cell line derived from poorly differentiated gastric
adenocarcinoma), HGC-27 (derived from lymph node
metastasis of GC) and MKN-45 (metastatic gastric cancer
cell line derived from a poorly differentiated gastric
adenocarcinoma) were cultured in appropriate media (21-
23). HGC-27 and MKN-45 were cultured in RPMI-1640
(Gibco, USA) containing 10% fetal bovine serum (FBS,
Gibco, USA) while AGS was cultured in DMEM-F12
(Gibco, USA) containing 10% FBS. All culture media
contained 50 pg/ml uridine (U6381, Sigma-Aldrich,
USA) and 1 mM sodium pyruvate (P2256, Sigma-Aldrich,
USA). All cells were cultured at 37°C in a humidified
atmosphere with 5% CO, in air.

mtDNA depletion and reversion

mtDNA levels of AGS, HGC-27 and MKN-45 were
reduced with low dose ethidium bromide (EtBr, 50 ng/ml)
treatment in the presence of 50 pg/ml uridine and ImM
sodium pyruvate.

Varying levels of mtDNA depletion were applied on
HGC-27 and MKN-45 cells to identify the mtDNA
setpoint at which the highest cell surface positivity for
anti-CD44 antibody was obtained. Given that mtDNA
depletion decreased cell surface positivity for anti-CD44
antibody in AGS cells, changes in CD44 positivity were
not analyzed with respect to different mtDNA levels.

To revert p'¥ cells, they were transferred to a EtBr-free
culture medium and remained in this medium until the
cells gained approximately normal mtDNA levels (>94%
of mtDNA levels of control cells). The resulting cells are
referred to here in after as 'reverted'.

Analysis of mtDNA copy number

Total DNA was isolated with Qiagen DNA Mini Kit (Qiagen,
Germany). Relative changes in mtDNA copy number were
analyzed with quantitative polymerase chain reaction (qQPCR).
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The mtDNA-encoding mitochondrial NADH dehydrogenase
(MT-ND1) gene specific primers (Integrated DN A Technologies,
USA) and Universal Probe Library (UPL) probes (Roche,
USA) were used for the analysis of changes in mtDNA copy
number. The nuclear DNA-encoding beta globin (HBB) gene
specific primers (Integrated DNA Technologies, USA) and UPL
probe (Roche, USA) were used for normalization of expression
changes since each cell has twoand multiple copies of nuclear
and mitochondrial genomes respectively and this may thus be
used for normalizing data. The primers and probes that are used
in for this test are shown in Table 1. For all qPCR reactions,
FastStart Universal Master Mix (Roche, USA) and the Roche
Light Cycler 480 instrument (Roche, USA) were used.

Table 1: Primers and probes used in the analysis of mtDNA copy number

Gene Sequence primer (5°-3°) Probe and
name catalog
number
HBB F: TTTTGCTAATCATGTTCATACCTCTT UPL
R: CCAGCACACAGACCAGCA probe #61-
04688597001
MT-NDI  F: AACCTCTCCACCCTTATCACAA UPL
R: TCATATTATGGCCAAGGGTCA probe #51-
04688481001
Flow Cytometry

For flow cytometric analysis, trypsinized cells were
washed twice with phosphate-buffered saline (PBS).
Cell pellets were then resuspended and stained with
CD44 (Biolegend, USA) and CD24 (BD Pharmingen,
USA) antibodies. Gates were adjusted according to the
unstained samples. All analyses were run on a BD FACS
Aria III instrument (Becton Dickinson, USA).

Chemosensitivity assay

Cells were seeded in 96 well plates at a density of 5000
cells/well in 150 pl of medium or without (i.e. control)
chemotherapeutic drugs [fluorouracil (5-FU) and cisplatin] in
triplicate. For the chemosensitivity assay, cells were treated
with 1-1.5 pg/ml5-FU and 0.5-0.75 pg/ml cisplatin for 48
hours. The MTS assay was then used to assess the relative
viability of cells. CellTiter 96® AQueous One Solution
Reagent (Promega, USA) was added to each well and plates
were incubated at 37°C for 2 hours immediately after the
chemotherapeutic treatment. Cell viability was assessed by
measuring absorbance at 490 nm with the ELx800 ELISA
microplate reader (BioTek, USA).

Statistical analysis

Each experiment was performed in triplicate. One-way
ANOVA with post-hoc Tukey HSD was used to test for
differences among AGS, MKN-45 and HGC-27 cell lines.

P<0.05 was considered as statistically significant.
Results

Identification of mtDNA setpoint for the highest CD44
positivity

We measured CD44 levels corresponding to different



mtDNA content. CD44 positivity reached its maximum value
when the mtDNA level was at 33-40% of that observed in
control cells of HGC-27 and MKN-45 cells (P<0.05). The
changes in CD44 positivity with respect to mtDNA content
for HGC-27 cells (Fig.1). A similar trend in CD44 positivity
was also observed for MKN-45 cells (data not shown because
the changes in cell surface positivity to CD44 in MKN-45
cells were slight and in the range of 1-2%). HGC-27 cells
were only shown in Figure 1. In contrast, mtDNA depletion
decreased CD44 positivity in AGS cells and the changes in
CD44 positivity were not analyzed with respect to different
mtDNA levels. Therefore, AGS cells with 33-40% mtDNA
content of control cells were used as p' AGS cells.
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Fig.1: Changes in CD44 positivity with respect to mtDNA content in
HGC-27 cells. Error bars represent SD. Asterisks (*) indicate statistical
significance (P<0.05).

mtDNA setpoint effect on CD44 positivity

Depletion of mtDNA to the identified setpoint increased
CD44 positivity in both HGC-27 (350% increase over
control cells) and MKN-45 cells (1% increase over
control cells) (P<0.05), however, mean fluorescence
intensity (MFTI) levels were increased only in HGC-27 p'o¥
cells. For HGC-27 (620% increase over control cells) and
MKN-45 (2% increase over control cells), the increase
in positivity and the MFI levels of CD44 remained after
the cells were reverted (P<0.05). The overlay histograms
of CD44 positivity for control, p¥ and reverted cells
(Fig.2). As expected mtDNA depletion to the setpoint also
decreased cell surface positivity to anti-CD44 antibody
in AGS cells, however, this decrease (2%) was minimal.

mtDNA depletion decreased CD24 Positivity in AGS,
HGC-27 and MKN-45 cells

Among the control cells, the highest CD24 positivity was
found in MKN-45 cells and the lowest in AGS cells, showing
very low levels. After depletion of mtDNA to the setpoint,
CD24 positivity was reduced in all AGS (80% decrease
over control cells), HGC-27 (nearly 100% decrease over
control cells) and MKN-45 (48% decrease over control cells)
cells. Unlike reverted AGS, reverted HGC-27 and MKN-45
partially regained cell surface positivity for CD24 (Fig.3).
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Fig.2: The cell surface positivity foranti-CD44 antibody. A. The overla
histogram of anti-CD44 antibody staining in AGS, HGC-27 and MKN-4
control cells, B. The overlay histogram of anti-CD44 antibody stainin
in AGS, HGC-27 and MKN-45 p*¥ cells, and C. The overlay histogram o
anti-CD44 antibody staining in AGS, HGC-27 and MKN-45 reverted cells.
Asterisks (*) show statistical significance (P<0.05) based on comparison

with controls of each cell line.
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Fig.3: The cell surface positivity foranti-CD24 antibody in AGS, HGC-27 and
MKN-45 cell lines. A. The overlay histogram of anti-CD24 antiBody stainin

in AGS, HGC-27 and MKN-45 control cells, B. The overlay histogram o
anti-CD24 antibody staining in AGS, HGC-27 and MKN-45 p“¥ cells, and
C. The overlay histogram of anti-CD24 antibody staining in AGS, HGC-27
and MKN-45 reverted cells. An asterisk (*) shows statistical significance

(P<0.05) based on comparison with controls of each cell line.
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Effect of the mtDNA setpoint on chemoresistance

At the first step of chemoresistance analysis, changes
in chemoresistance levels were analyzed for HGC-
27 cells with different mtDNA contents to identify
the potential correlation with changes in anti-CD44
antibody positivity. HGC-27 was selected for this
analysis since changes in CD44 positivity with respect
to mtDNA depletion was most strongly associated
in this cell line. The highest chemoresistance was
found for HGC-27 p'°¥ cells with mtDNA levels at the
setpoint (P<0.05). The changes in chemoresistance to
5-FU and cisplatin with respect to mtDNA levels in
HGC-27 (Fig.4).

The mtDNA setpoint increased 5-FU and cisplatin
chemoresistance of AGS, HGC-27 and MKN-45
p'¥ cells while the most prominent was observed in
mtDNA-depleted AGS cells. AGS cells (88% increase
for 1 pg/ml 5-FU, 100% increase for 1.5 pg/ml 5-FU,
5% increase for 0.5 pg/ml cisplatin and 11% increase
for 0.75 pg/ml), HGC-27p'" cells (11% increase for
Ipg/ml 5-FU, 19% increase for 1.5 pg/ml 5-FU, 8%
increase for 0.5 pg/ml cisplatin, 10% increase for 0.75
pg/ml cisplatin) (P<0.05) and MKN-45p'™ cells (35%
increase for 1 pg/ml 5-FU, 50% increase for 1.5 pg/
ml 5-FU, 12% increase for 0.5 pg/ml cisplatin, 46%
increase for 0.75 pg/ml) (P<0.05).

After the mtDNA content was returned to normal
levels, chemoresistance remained for low doses of
5-FU and cisplatin in reverted HGC-27 and MKN-45
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cells. However, in AGS cells, chemoresistance was
lower in reverted cells than in control cells (Fig.5).
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Fig.4: Changes in chemoresistance for control, p"* (0.6, 0.4, 0.18) and
reverted HGC-27 cells. A. 5-FU and B. Cisplatin. Error bars represent SD.
Asterisks (*) indicate statistical significance (P<0.05).
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Fig.5: Changes in chemoresistance for 5-FU and cisplatin in AGS, HGC-27 and MKN-45 cells. A-C. Changes in chemoresistance for 5-FU in control, p'"
(33-40%) and reverted AGS, HGC-27 and MKN-45 cells, respectively and D-F. Changes in chemoresistance for cisplatin in control, p* and reverted AGS,
HGC-27, MKN-45 cells, respectively. Error bars represent SD. Asterisks (*) indicate statistical significance (P<0.05).
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Discussion

In this study, a mtDNA setpoint was identified for the
highest levels of chemoresistance and CD44 expression
(as CSC marker) in GC cell lines. We observed the
highest levels of cell surface positivity for CD44 (for
HGC-27 and MKN-45 cells) and chemoresistance (for
all three cell lines) when mtDNA content is depleted to
33-40% of that in control cells. Interestingly, the levels
of chemoresistance and cell surface positivity for CD44
decreased when mtDNA depletion was either above or
below this level. Some previous studies analysed the
effect of mtDNA depletion on chemoresistance and CD44
expression in cancer cells but they failed to identify the
mtDNA setpoint (12-14, 20).

It has been indicated that CD44 is a chemoresistance
inducer (24-26). The changes in cell surface positivity
for anti-CD44 antibody were correlated with changes in
chemoresistance levels of metastatic HGC-27 and MKN-
45 cells. This finding may indicate that mtDNA depletion
associated with increase in chemoresistance may be a
reflection of an association with CD44 positivity in HGC-
27 and MKN-45 metastatic GC cell lines. On the other
hand, p'¥ AGS cells had increased chemoresistance in
spite of decreased CD44 positivity. This finding may
indicate that the association of CD44 positivity with the
level of chemoresistance is only a metastasis signature
and therefore absent in the non-metastatic AGS GC cell
line. Further studies are needed to test and validate this
hypothesis.

In contrast to CD44, cell surface positivity for anti-
CD24 antibody decreased with mtDNA depletion in
HGC-27 and MKN-45 cells. In addition, a decrease in
chemoresistance was correlated with increased CD24
positivity in reverted HGC-27 and MKN-45 cells in spite
of high CD44 positivity. This finding suggests that the
mtDNA depletion-related increase in chemoresistance
of metastatic HGC-27 and MKN-45 cell lines may be
inhibited by increased cell surface expression of CD24,
an attribute which may be related with the apoptosis-
inducing characteristic of CD24 (8).

HGC-27 and MKN-45, unlike AGS,partially maintained
chemoresistance after reverting to normal mtDNA levels.
The cell surface positivity was also found to be very low
in AGS reverted cells. Given that CD44 is thought to be
a chemoresistance inducer (24-26), the maintenance of
chemoresistance after reversion may be associated with
the level of CD44 positivity in reverted HGC-27 and
MKN-45 cells.

Conclusion

We not only confirm that mtDNA depletion triggers
chemoresistance in correlation with an increase and
decrease in CD44 and CD24 positivity respectively in
HGC-27 and MKN-45 metastatic GC cell lines, but also,
importantly, identified a mtDNA setpoint, at 33-40% of
that observed in control cells, resulting in the highest
levels of cell surface positivity for anti-CD44 antibody

Terzioglu et al.

and chemoresistance. This mtDNA setpoint may thus be
potentially used as a target for metastatic GC therapy if
further independent studies are validated.
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