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Skin replacement has been a challenging task in wound healing resulted from burn. The 
application of laboratory based tissue expansion techniques is a potential solution to 
the problem of surface area cover. Fortunately, considerable progress has been made 
in approaches to allograft and autograft skin transplantation in order to replace skin 
temporarily or permanently. Despite of this progress, development of new treatments for 
burn victims are still a problem in cultured skin grafts.  Hair follicles, sweat glands and other 
features of normal skin are absent in cultured skin. Scientists believe that Stem cells with 
unique characteristics including self renewal and differentiation potential offer a possible 
way for reconstruction of some structures within the wound. So, enhanced understanding 
of stem cell potentials may help develop novel therapies to overcome the problems in 
wound healing.
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Introduction
Burns are one of the most common and devastating 
forms of trauma. Patients with serious thermal injury 
require immediate specialized care in order to minimize 
morbidity and mortality. A report of the National Center 
for injury Prevention and Control in the United States 
shows approximately 1.2 million people affected with 
burn injuries (1). Burn injuries in Iran, like other de-
veloping countries, are much more common than in the 
USA. Moreover, the mean age of Iranian patients is less 
than others, and the mortality rate is higher. In recent 
epidemiology study in Tokyo, the overall mortality rate 
was 15.4%, whereas this rate in shiraz was 32% (2).
The choice between tissue repair or replacement method 
in acute or chronic loss of skin barrier needs informa-
tion about burn severity and involved skin layers deter-
mination (3). Several factors are used to determine the 
severity of a burn injury, including the patientsُ age, size 
and depth of burn, and the location of the burn. Burns 
are classified by depth and they may be first, second, 
or third degree which sometimes known as superficial, 
partial thickness, or full-thickness, respectively (4). 
First degree burns (Superficial Burns) involve minimal 
tissue damage and they involve only the superficial lay-
er of skin (epidermis). This type of burn usually heals 
in 5-6 days without any permanent scarring. Second-
degree burns (Partial-Thickness Burns) affect both the 
outer-layer (epidermis) and the underlying layer of skin 
(dermis) causing redness, pain, swelling and blisters. 
This type of burn usually heals in 3-4 weeks, and scar 
formation may occur. Third-degree burns (Full-Thick-

ness Burns) affect the epidermis, dermis and hypo-
dermis; causing charring of skin, or translucent white 
coagulated vessels visible just below the skin surface. 
This type of burn can be extremely painful or relatively 
painless if the burn destroys the nerve endings. This 
burn is critical and requires immediate medical atten-
tion.
Loss of the functional skin barrier leads to increase sus-
ceptibility to infection, the major cause of morbidity 
and mortality following burns. Skin is the body’s larg-
est organ. Its structure has been designed in a way that 
functions as the first line of defense protecting against 
the invasion of foreign bodies and organisms. It has 
specific immune and metabolic functions and is im-
portant in regulating body temperature, fluid and elec-
trolytes (3). Skin contains the three main layers of the 
most superficial epidermal barrier layer and the lower, 
much thicker, dermis and the deepest, hypodermis or 
fat layer. The epidermal barrier layer is relatively thin 
(0.1-0.2 mm in depth) and the most common cells in 
the epidermis are keratinocytes that form the surface 
barrier layer. The dermis varies in thickness depending 
on its site in the body; composing primarily of collagen 
I, dermal inclusions of hair shafts, and sweat glands; 
which are lined with epidermal keratinocytes. Fibrob-
lasts form the lower dermal layer and provide strength 
and resilience (5).
A number of approaches were taken in burn repair. One 
way is skin grafting. Advantages of graft-take to wound 
healing include an immediate barrier to microorganism 



invasion and minimal new tissue synthesis required to 
close the defect. The take of a skin graft requires mini-
mal new tissue synthesis (6). Other approaches are the 
developing of skin substitutes such as an acellular matrix 
complex that would guide the migration of fibroblasts 
into a pattern that had dermal-like qualities (7). Another 
way is to expand a small piece of epidermis into a very 
large transplantable viable autologous-epidermal cell 
layer through tissue culturing (8). The new method is to 
develop a skin equivalent composed of both a collagen 
matrix populated with viable fibroblasts and a dermal 
equivalent layer that is covered with viable keratinocytes 
(epidermal layer) (9). This skin equivalent have both a 
connective tissue component and viable cells (6).
However, methods for handling burn wounds have 
changed in recent decades like: transplantation, tissue 
engineering and now, stem cells therapies. But, ques-
tions related to optimal cell type for culture, culture 
techniques, transplantation of confluent sheets or non-
confluent cells, immediate and late final take, carrier 
and transfer modality, as well as final outcome, ability 
to generate an epithelium after transplantation, and scar 
quality are still not fully answered. In this review article, 
we are going to mention the current and promising cell 
therapy methods to burn repair.

Skin grafts
There are a variety of skin grafts, some that provide tem-
porary cover and others that are for permanent wound 
coverage. 

Allogenic skin graft (Temporary Wound Covering) 
Allogeneic or alloplastic skin substitute coverage as a 
temporary solution is necessary until definitive cover 
can be achieved (10-18).  The clinical use of allograft 
skin in the modern era was popularized by James Bar-
rett Brown, who described its use in 1942. Skin graft-
ing, which consists of excision or the surgical removal 
of burn injured tissue; choosing a donor site or an area 
from which healthy skin is removed to be used as cover 
for the cleaned burned area; and harvesting, where the 
graft is removed from the donor site by a dermatome that 
shaves a piece of skin, about 10/1000 of an inch thick, 
off the unburned area. Finally, the surgeon places and 
secures the skin graft over the surgically cleaned wound 
so that it can heal. To help the graft heal and become 
secure, the area of the graft is not moved for five days 
following each surgery (immobilization period). During 
this immobilization period, blood vessels begin to grow 
from the tissue below into the donor skin, bonding the 
two layers together. Five days after grafting, exercise 
therapy programs, tub baths and other normal daily ac-
tivities resume (19). Allogenic skin grafts may be com-
pletely integrated into the healing wound initially and 
bridge the critical time gap in the early phase of burn 
treatment.
However, the need to provide skin cover in a situation 
of inadequate donor sites lead to the interest in cultur-

ing elements of the uninjured allograft skin which is 
associated with accelerated wound healing.  It seems, 
the resulted wound healing by cultured epidermal allo-
grafts is attributable to cytokine contents in the cultured 
epidermis, e.g. TGF-α, IL-1α, IL-1β, IL-6, IL-8, GM-
CSF and keratinocyte derived T-cell growth factors, 
which they could reconstruct damaged areas quicker 
(20-25). Allografts, however, ultimately provoke rejec-
tion through the expression of immunological crucial 
HLA-DR antigen by the Langerhans cells (11, 16, 26-
28). Clinicians have responded to this problem of re-
jection with the increased use of immunosuppressive 
therapies, but the harmful consequences have limited 
the widespread clinical application of this approach. 
The other limitation in application of uncultured skin al-
lograft is for children. Burn treatments in children com-
pared to adults are associated with several difficulties, 
e.g. limitation of available skin replacement, expan-
sion of donor area, increase in subsequent hypertrophic 
scar and contracture due to their physical growth. The 
principal targets in the treatment of burns in pediatric 
patients are (i) early closure of wounds; (ii) minimize 
scar size; and (iii) minimize donor area. Yanaga et.al 
(29) have applied cryopreserved cultured epidermal al-
lografts to pediatrics (Fig 1). 
 
Autogenic skin graft (Permanent Wound Covering)
They believe cryopreserved cultured epidermal allo-
grafts have several advantages: (i) it is frozen stored, 
and can be used anytime when necessary; (ii) it brings 
about early closure of wounds; (iii) it can be applied 
repeatedly; and (iv) a donor is not required, but the dis-
advantage is that it is not taken permanently (29). 
Autograft is skin taken from the person burned, which is 
used to cover wounds permanently. There are two types 
of uncultured autografts used for permanent wound cov-
erage: sheet grafts and meshed grafts. It is notable that 
uncultured skin autograft is used for limited burned area 
and for widespread burns; the cultured autograft skin is 
needed.

Uncultured skin autograft
Sheet Graft
Sheet Graft is piece of donor skin, removed from an un-
burned area of the body, a process called «harvesting the 
donor». The size of the donor skin that is used to patch a 
burned area is about the same size as the burn size. The 
donor sheet is laid over the excised wound and stapled in 
place. The disadvantages of sheet grafts are that small areas 
of graft might be lost from build up of fluid (hematoma) 
under the sheet right after surgery. Sheet grafts also need a 
larger donor site than meshed skin. A sheet graft is usually 
more durability and scars less (19). 

Meshed skin graft
It is difficult to cover when there is very large areas of 
open wounds because of not enough unburned donor 
skin availability. So, it is necessary to enlarge donor 
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skin to cover a larger body surface area. Meshing is a 
mean to enlarge donor skin. Meshing involves running 
the donor skin through a machine that makes small slits, 
which allows expansion similar to that in fish netting. 
In a meshed skin graft, the skin from the donor site is 
stretched to allow it to cover an area larger than itself. 
Most donor skin is meshed at a 1:1 or 1:2 ratio because 
the larger the size mesh the more fragile the graft. No 

matter what size meshing is used; healing occurs as the 
spaces between the mesh; called the intricities, fill in 
with new epithelial skin growth. The disadvantages of 
meshing are to be a less durable graft than a sheet graft. 
Meshing serves two purposes: it allows blood and body 
fluids to drain from under the skin grafts, preventing 
graft loss, and it allows the donor skin to cover a greater 
burned area because it is expanded (19).

Fig 2: The main cells of skin. A) Keratinocytes; are the most common cell type in the epidermis and form the surface 
barrier layer. B) Melanocytes; are found in the lower layer of the epidermis and provide skin color, C)  Fibroblasts 
form the lower dermal layer and provide strength and resilience

A B C
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Fig 1:  A 10-month-old baby girl. A) Seven days after grafting cryopreserved cultured epidermal allografts on the 
recipient site of the back. Inside the arrow heads shows the area where the grafts were taken. B) One month after 
grafting. The grafted area has milder redness compared to the non-grafted area. C) Seven months after grafting. 
The grafted area has less scar formation compared to the non-grafted area. D) Thirty-nine months after grafting. 
Scar formation was clearly suppressed on the grafted area. Inside the arrow heads shows the grafted area. Adopted 
from (29). 
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Cultured skin autograft
In massive burns, however, the available skin donor sites 
for autografting may be very limited. This has fostered 
the development of alternative methods such as autolo-
gous cultured skin graft and allograft skin substitutes as 
mentioned before. Two main techniques in autogenous 
graft for burn treatment include "cultured epithelial 
autografts; CEA" and "cell suspension".

Cell cultured epithelial autograft (CEA) 
In 1975, Reinwald and Green demonstrated that disag-
gregated epidermal cells (Fig 2) could be isolated and 
serially sub-cultured in vitro (shown in Fig 3) (30). 
Shortly afterwards, viable epithelial sheets, suitable 
for grafting were produced. From 1981, clinical case 
reports describing the use of cultured keratinocytes as 
permanent autografts in burn wound management were 
published (31). 
Cultured sheets of human autologous epithelium (CEA 
= cultured epithelial autografts) still represent the "gold 
standard" to resurface large wounds (8). So, cultured 
epidermal sheet autografts became available to comple-
ment autologous split thickness skin grafts in treating 
major burns or other large wounds (8).
Despite of more laboratory skills in producing conflu-
ent grafts of keratinocytes, the epidermal sheet grafts 
have several shortcomings (13, 33, 34). First, harvesting 
the cell sheets from the culture dishes by trypsin treat-
ment could damage the anchoring proteins of the cells 
(35-37). This could be one of the reasons of a mechani-
cal instability of epidermal sheet grafts and insufficient 
dermal–epidermal reconstitution that lowers the uptake 
ratio of the grafts for a long time after transplantation 
(36, 38, 39). Second, epidermal sheet grafts usually 
require a long fabrication period (40). Third, cultured 
epidermal sheet grafts composed of fully differentiated 
keratinocytes might not exhibit further proliferation of 
keratinocytes after transplantation (35). Fourth, epider-
mal sheets are only 8–10 cells thick, which make them 
fragile and difficult to handle (8, 36) and have high costs 
of production (37).

The attention to, and understanding of, these shortcom-
ings have led to a progressive development of skin cul-
ture techniques and an increased use of suspensions of 
keratinocytes single cells being transplanted instead of 
sheet grafts. 

Cell suspensions
Surprisingly good clinical results using the technique 
of "epithelial cell seeding" had been published by von 
Mangoldt as early as in 1895 to treat chronic wounds 
and wound cavities (41). In his original description 
he harvested epithelial cells or cell clusters by scrap-
ing off superficial epithelium from a patient´s fore-
arm with a surgical blade until fibrin was exudated 
from the wound. This mixture was then applied to 
wounds. He claimed reduced donor site morbidity 
and a more regular aspect of the resurfaced wounds 
when compared to the method of Reverdin, which 
was the common method at that time. One of his 
key observations was the fact that single cells or cell 
clusters would better attach to the wound bed than 
conventional pieces of skin.
One problem associated with pipetting keratinocytes 
in suspension is to prevente spillage of cells from the 
wound and achieve an even delivery (42). Fraulin et 
al. (43), in 1998, described a novel technique in which 
they used an aerosol device to spray epithelial cells on 
wounds in pigs. They noted that re-epithelialisation, 
re-growth of epithelial tissue over a denuded surface, 
was quicker than in unsprayed controls. Further advan-
tages of suspension transplantation are to reduce time 
needed for culture and the fact that suspended kerati-
nocytes can be transported from laboratory to patient in 
small vials, thus reducing the costs involved and stor-
ing frozen in clinic for transplantation (44). Because the 
cells, in culturing and transplanting, are as a suspension 
rather than a sheet; the use of enzymes like, Dispase1 
can be avoided (45). Navarro et al. (46) developed this 
technique further by combining it with meshed split 
thickness skin grafts. They reported faster healing and a 
better quality of cells when they were sprayed.
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Fig 3: Diagram showing the various steps of the classical keratinocyte culture technique de-
scribed by Rheinwald and Green. Adopted by modification from (32). 

A. Skin biopsy

B. Isolation of epidermal Cells 

C. Plating on inactivated & 
irradiate feeder cells

D. Cologenic keratinocytes 
amblified by subculturing E. Epidermal sheet

F. Tranfer & attachment to 
backing material

G. Epidermal detachment 
(Dispase or Thermolysm)

H. Transplantation



A comparative in vitro study has been done by Fre-
driksson and et al. (44), considering commonly used 
application techniques. Although, it has not been 
compared in vivo with in vitro condition, it did pro-
vide valuable information about different measures in 
transplantation of autologous keratinocytes as a single 
cell suspension. There is hope that, with further stud-
ies, advances in this field will lead to the development 
of an equipment that is fairly cheap and easy to operate 
(44). 
However, an alternative approach to facilitate the de-
livery of keratinocytes in suspension is to use a matrix 
material such as fibrin glue to fix the cells (47).

Membrane delivery systems
To transfer preconfluent keratinocytes to a wound, 
a delivery system is required. Various methods have 
been described. Cells can be grown in a culture ves-
sel, trypsinized, and applied directly in suspension or 
grown directly onto a delivery membrane that is then 
removed from the dish, inverted, and applied to the 
wound bed.
A number of delivery systems based on biological tis-
sue including Collagen I (48-51),  Fibrin Glue, a hu-
man plasma protein concentrate that contains fibrino-
gen, factor XIII, and fibronectin that have undergone 
viral inactivation (52, 53), Hyaluronic Acid (54), Acel-

lular Porcine Dermis (55) or based on synthetic poly-
mers such as Polyurethane (56), Polymeric Film (57), 
Teflon® Film (58), Poly(hydroxyethyl Methacrylate) 
(59), Celltran (60),  Spherical Microcarriers (61) have 
been developed (review in (56).
Membrane delivery systems have the advantage of easy 
handling and ensuring contact of cells with the wound. 
The potential disadvantages are that a proportion of 
keratinocytes may not attach to the membrane, and of 
those that do attach, not all will transfer to the wound 
bed (56). These potential inefficiencies need to be as-
sessed for each delivery method. However, it is difficult 
to compare the efficacy of the delivery systems because 
of variations in used keratinocyte seeding density and 
studied types of wound. 
Moreover, these delivery methods only transfer kerati-
nocytes and are only part of the solution to wound cov-
erage after full-thickness skin loss in burns patients. It 
is widely appreciated that the addition of a dermal sub-
stitute to such a wound is important for stable wound 
healing (62-65). This may also require the transplanta-
tion of fibroblasts to enhance healing further and im-
prove the mechanical properties of the graft (66-68). 
The role of delivery of preconfluent keratinocytes in 
conjunction with methods of dermal delivery should 
also be assessed.

Table 1: Current commercially available or marketed matrices and products for tissue
engineered skin substitutes. Adopted from (41).

ManufactureBrand NameMaterial
Organogenesis, Canton, MAApligraf™ 

(earlier name: Graftskin™)
Collagen gel + cult. Allog. HuK + 
allog. HuFi

Genzyme Biosurgery,
Cambridge, MAq

Epicell™cult. Autol HuK

Advanced Tissue LaJolla, CATranscyte™PGA/PLA + ECMP DAHF
Integra LifeScience,
Plainsborough, NJ

Integra™Collagen GAGsilicone foil

Lifecell Corporation,
Branchberg, NJ

AlloDerm™Acellular dermis

Fidia Advanced
Biopolymers, Padua, Italy

Laserskin™HAM + cult. HuK

Advanced Tissue Sciences,
LaJolla, CA

Dermagraft™PGA/PLA + allog. HuFi

Ortec International, Inc., New York, NYOrcel™Collagen + allog HuFi +allog HuK
BioTissue Technologies,
Freiburg, Germany

Bioseed ™Fibrin sealant + cult. Autol HuK

HC ImplantsPolyactive ™PEO/PBT + autol. HuFi +cult autol 
HuK

Fidia Advanced
Biopolymers, Padua, Italy

Hyalograft 3D™HAM + HuFi

Dow Hickham/Bertek
Pharmac., Sugar Land, Tx

Biobrane™Silicone + nylon mesh + collagen

ECMP = extracellular matrixproteins, DAHF= derived from allog. HuFi, GAG=glycosaminoglycan, 
PGA = polyglycolic acid (Dexon™), PLA = polylactic acid(Vicryl™), PEO = polyethylen oxide, PBT 
= polybutyliterephthalate, cult. = cultured;autol.= autologous, allog. = allogeneic, HuFi = human fi-
broblasts, HuK= human keratinocytes, HAM = microperforated Hyaluronic Acid Membrane (benzilic 
esters of hyaluronic acid =HYAFF-11®)
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At the moment, scientific principles and practical ap-
proaches to replace skin temporarily or permanently are 
advancing at a rapid rate. However, there is definitely 
need further progress to optimize skin substitute per-
formance by tissue engineering procedures.

Skin tissue engineering
The skin is indeed a complex structure incorporating a 
fusion of several different cell types, integrated within 
a three dimensional matrix containing both fibrillar and 
nonfibrillar elements. To synthesize such a complex 
structure by identifying the component parts and to put 
them together is neither practical nor realistic. It must 
be observed, however, that this integrative strategy has 
been the major one used in skin tissue engineering dur-
ing its less productive phase (69).
Three factors should be considered in the development 
of tissue-engineered materials: the safety of the patient, 
clinical efficacy and convenience of use. Any cultured 
cell material carries the risk of transmitting viral or bacte-
rial infection, and some support materials (such as bovine 
collagen and murine feeder cells) may also have a disease 
risk. There must be clear evidence that tissue-engineered 
materials provide benefit to the patient. Essential charac-
teristics are that it heals well and has the physical proper-
ties of normal skin. To achieve effective healing, the tissue-
engineered products must attach well to the wound bed, 
be supported by new vasculature, not be rejected by the 
immune system and be capable of self repair throughout 
a patient’s life. Finally, materials need to be convenient to 
use or they will not achieve clinical uptake (5).
Most tissue-engineered skin is created by expanding skin 
cells in the laboratory (at a rate much greater than would 
be achieved on the patient) and used to restore barrier 
function (the primary objective for burns patients) or to 
initiate wound healing (for chronic non-healing ulcers).
Currently, commercially available or marketed matri-
ces and products for tissue engineered skin substitutes 
are shown in Table 1. There are those that replace the 

epidermal layer only, those that provide a dermal sub-
stitute, and a small number that provide both. In some 
clinical conditions (such as non-healing ulcers and su-
perficial burns) simply transferring laboratory-expand-
ed cells can benefit patients, but the treatment of major 
full-thickness burns requires the replacement of both 
dermis and epidermis. There are four major challenges 
in this field: improving safety, finding a substitute for 
split-thickness grafts, improving angiogenesis in re-
placement tissue once it has been grafted to the wound 
bed, and improving ease of use (5). Fig 4 shows the 
‘biological’ as opposed to the ‘engineering’ concepts of 
the skin structure.
Although progress has been made in developing new 
treatments for burn vic tims, including skin grafting and 
artificial skin technologies; these cultured skin grafts do 
not have hair follicles, sweat glands and other features 
of normal skin. The result is thin, inflexible skin (which 
hampers mobility of joints), and skin that dramatically 
differs from the remaining healthy skin. A promising al-
ternative to these techniques is stem cell-based therapy. 
Scientists believe that results of stem cell research will 
help identify those cells responsible for differentiat-
ing into the various elements that comprise the dermis, 
and eventually produce skin that will help patients heal 
quicker with less scarring and more flex ibility, and per-
haps, even produce a skin that literally matches that of 
the rest of the body. 

Stem cell strategies in burn care
Stem cells are characterized by their prolonged self re-
newal capacity and their asymmetric replication (70) 
(Fig 5). Asymmetric replication describes a special 
property of stem cells: with every cell division, one of 
the cells retain its self-renewing capacity, whereas the 
other enter a differentiation pathway and join a mature 
non-dividing population (71). Stem cells were first iden-
tified as pluripotent cells in embryos, and these were 
called embryonic stem (ES) cells which are defined by 

Fig 4: Skin components in tissue engineering.
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their origin (the inner cell mass of the blastocysts) (72). 
It is now clear that stem cells are also present in many, 
if not all, tissues in adult animals and contribute to the 
maintenance of tissue renewal and homeostasis. Cur-
rently, the challenge is to define the optimum source; 
processing and method of application of stem cells as 
well as defining their role.
It has been known for several decades that the epidermis 
of the skin contains a subpopulation of basal cells that 
exhibit the properties expected of somatic stem cells: 
slow cell cycle, high proliferative potential, location in 
a protected niche, capacity to maintain and repair the 
tissue in which they reside, and long life span (Fig 6) 
(73-77). Slowly, cycling epidermal stem cells have 
been identified by long-term nuclear retention of triti-
ated thymidine or bromodeoxyuridine label (74, 78). 
These undifferentiated label-retaining stem cells have 
been shown to reside in the bulge area of the hair fol-
licle, (76, 79, 80) and in the interfollicular basal layer of 
the epidermis (74, 78, 81). They are self-renewing and 
able to produce daughter transient amplifying cells that 
undergo a finite number of cell divisions before they 
differentiate and leave the proliferative basal compart-
ment, a property similar to stem cells in other continu-
ously renewing tissues (82). Scientists have found that 
skin progenitor stem cells (keratinocyte progenitors) in 
adult human skin have a significant capacity for growth 
and tissue regeneration.
Stem cells can be induced to differentiate into cells 
with specialized functions, such as skin keratinocytes 
(84). It is for this reason that stem cells show such po-
tential for treating burns. But what type of stem cell 
shows the most applicable? The clinical application 
of embryonic stem cells is likely to beset with nu-
merous ethical but also safety concerns. Fetal tissue, 
likewise, will be associated with ethical issues. The 
reality of widespread applications of stem cells devoid 
of complex ethical dimensions really begins with hu-
man umbilical cord blood and Bone-marrow derived 
stem cells. This has been used in a number of clinical 
‘haematopoetic’ applications as a ‘transplant’ which 

underlines the safety and efficacy of these stem cell 
sources (85-87).
There are two main branches of stem cells in the bone 
marrow (BM), hematopoietic stem cells (HSCs) and 
mesenchymal stem cells (MSCs) (Fig 7). Adult bone 
marrow-derived HSCs have long been recognized to 
give rise to all blood cell lineages and some non-blood 
cells such as hepatocytes, (88) endothelial cells (EC), 
smooth muscle cells, and cardiac myocytes (89). 

Fig 6: The epidermal stem cell. Adopted from (83)

However; much controversy exists over HSC plastic-
ity. In contrast, BM-MSCs are self-renewing, clonal 
precursors of non-hematopoietic tissues. Although 
they are present as a rare population of cells in bone 
marrow, representing perhaps 0.001–0.01% of the 
nucleated cells and about 10-fold less abundant 
than HSCs; they are expandable in culture, multipo-
tent, and capable of differentiating into osteoblasts, 
chondrocytes, astrocytes, pneumocytes, hepato-
cytes, neurons, and cardiac myocytes (89-95). As 
Bone Marrow derived Cells (BMDCs) have been 
found in skin epidermis in several studies (96-100), 

Fig 5. Asymmetric and Symmetric division of Stem cells. A) If stem cell (SC) replication gives rise to one 
daughter cell that retains SC capabilities and the other differentiates, the preceding mitotic event is con-
sidered to be asymmetric. B, C) ) If stem cell (SC) replication gives rise to daughter cells that share the 
same fate (become committed to differentiate  or SCs), the preceding division is considered to be symmetric.
(This figure has also been printed in full-color at the end of the issue)
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it is assumed that Bone Marrow Stem Cells (BMSCs) 
may be involved in skin repair and regeneration.
The most studied progenitor cell type is the hemat-
opoietic stem cell (HSC) from the bone marrow. By 
creating chimeric mice that express green fluores-
cent protein (GFP) only in their bone marrow cells; 
Hocking and et al (96) have found that HSCs migrate 
to sites of dermal injury, differentiate into several 
cell phenotypes, and incorporate into the cutaneous 
wound for the long term. The majority of these bone 
marrow derived cells resemble undifferentiated der-
mal fibroblasts with occasional dendritic type cells 
and endothelial cells. These findings suggest that 
bone marrow derived cells in the wound, not only 
participate in the inflammatory response, but are 
an important source of cells for reconstituting the 
dermis. 

Fig 7: Bone Marrow derived stem cells. A) Mesenchymal 
stem cell, B) Heamatopoietic stem cell colony

MSCs seem to be non immunogenic and maybe 
‘‘universal’’(101). They can confer a state of immune 
tolerance to the recipient (97-100). If this is true, a 
new era of understanding will be started in Transplan-
tation. But, why should a cell have evolved in such 
a way to be involved both in regeneration and toler-
ance? Burn patients have transient states of immune 
suppression and acceptance of allografts in the acute 
phase in parallel with their increased pool of circulat-

ing MSCs (101, 102). Direct injection of bone mar-
row derived mesenchymal stem cells or endothelial 
progenitor cells into injured tissues shows improved 
repair through mechanisms of differentiation and/
or release of paracrine factors (70). Previous stud-
ies have shown that cultured Epithelial Cells(EPCs) 
release growth factors, such as vascular endothelial 
growth factor (VEGF), hepatocyte growth factor, 
G-CSF, GM-CSF, and platelet-derived growth fac-
tor-B61 that could exert a protective effect on en-
dogenous EC and other myocardial cells. Cultured 
BM-MSCs have been found to release VEGF, ba-
sic fibroblast growth factor (bFGF), IL-6, placental 
growth factor (PlGF), and monocyte chemoattractant 
protein-1 (103).
Could MSCs be the link between this state of tol-
erance and the capacity to regenerate? If it is to be 
proved, the new field of Regenerative Medicine, 
Transplantation and Burns beside many other disci-
plines will profoundly benefit from these discoveries 
without any doubt. In fact, Han et al (104), have been 
shown that Burn rat serum has a stronger chemotac-
tic effect on MSCs and the migration ability of MSC 
derived from burn rat is stronger than that of MSC 
derived from normal rat.
The prospect of being able to replace damaged tissue 
by the process of regeneration would dramatically 
and irrevocably change the impact, management and 
outcome of burns. The current understanding of stem 
cell-based modulation and therapy together with 
their potential developments bring this prospect ever 
closer to a clinical reality. Despite of the potential 
surrounding the stem cell field, we remain a long way 
from translating the research now being conducted in 
laboratories to therapies for patient.

Conclusion & Future outlook
Burns are one of the most harmful and complex 
physical injuries. They often happen unexpectedly 
and have the potential to cause death, lifelong disfig-
urement and dysfunction. The challenge of surviving 
a major burn depends on skin repair. Recently, skin 
grafting has evolved from the initial autograft and 
allograft preparations to biosynthetic and tissue-en-
gineered living skin replacements. Tissue engineer-
ing now provides the clinician with more therapeutic 
options and more challenges. Consequently, it is es-
sential to critically analyze the clinical needs of skin 
repair and understand skin replacement in terms of 
the availability, compatibility, safety and durability.
However both through basic and clinical research, 
there will be major improvements in the understand-
ing and ability to effectively deal with the problems 
of wound healing and replace a truly functional skin 
with dermal appendages. Research on stem cells may 
lead to improve skin reconstitution, while overcom-
ing current limits of donor sites and donor site mor-
bidity in afflicted patients.
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