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Abstract
Objective: Fast Free-of-Acrylamide Clearing Tissue (FACT) is a recently developed protocol for the whole tissue 
three-dimensional (3D) imaging. The FACT protocol clears lipids using sodium dodecyl sulfate (SDS) to increase the 
penetration of light and reflection of fluorescent signals from the depth of cleared tissue. The aim of the present study 
was using FACT protocol in combination with imaging of auto-fluorescency of red blood cells in vessels to image the 
vasculature of a translucent mouse tissues.  
Materials and Methods: In this experimental study, brain and other tissues of adult female mice or rats were dissected 
out without the perfusion. Mice brains were sliced for vasculature imaging before the clearing. Brain slices and other 
whole tissues of rodent were cleared by the FACT protocol and their clearing times were measured. After 1 mm of the 
brain slice clearing, the blood vessels containing auto-fluorescent red blood cells were imaged by a z-stack motorized 
epifluorescent microscope. The 3D structures of the brain vessels were reconstructed by Imaris software.         
Results: Auto-fluorescent blood vessels were 3D imaged by the FACT in mouse brain cortex. Clearing tissues of 
mice and rats were carried out by the FACT on the brain slices, spinal cord, heart, lung, adrenal gland, pancreas, liver, 
esophagus, duodenum, jejunum, ileum, skeletal muscle, bladder, ovary, and uterus.                 
Conclusion: The FACT protocol can be used for the murine whole tissue clearing. We highlighted that the 3D imaging 
of cortex vasculature can be done without antibody staining of non-perfused brain tissue, rather by a simple auto-
fluorescence.          

Keywords: FACT, Rodent, Three-Dimensional Imaging, Tissue, Vasculature
Cell Journal(Yakhteh), Vol 21, No 1, Apr-Jun (Spring) 2019, Pages: 49-56

Citation: Khoradmehr A, Mazaheri F, Anvari M, Tamadon A. A simple technique for three-dimensional imaging and segmentation of brain vasculature using 
fast free-of-acrylamide clearing tissue in murine. Cell J. 2019; 21(1): 49-56. doi: 10.22074/cellj.2019.5684.

Introduction

Three-dimensional (3D) imaging has enabled the study of 
systems from various cellular and extracellular structures, 
such as vasculature structure or neuronal networks in the 
brain (1, 2). Such studies require an extremely transparent 
tissue for the detection. Different protocols have been 
developed for the whole tissue clearing and 3D imaging. 
Benzyl alcohol and benzyl benzoate (BABB) were the 
first to make fixed tissues as thick as 2 cm transparent 
for the deep microscopic imaging compared to <50 μm 
using conventional immunohistochemical techniques (3). 
Several advances have been made for a high-resolution 
and a large-scale imaging of cleared tissue, including Scale 
(4), dibenzyl ether (DBE) (5), three-dimensional imaging 
of solvent-cleared organs (3DISCO) (6), See Deep Brain 
(seeDB) (7), ClearT (8), Clear Unobstructed Brain/Body 
Imaging Cocktails (CUBIC) (9), System-Wide control 
of Interaction Time and kinetics of Chemical (SWITCH) 
(10), and ultimate DISCO (uDISCO) (11).

Considering the limitations of the mentioned techniques 
including, fluorescence quenching of samples, incomplete 
clearing specimens, and lack of feasibility for antibody 
labeling, a series of other techniques have been developed. 
The fact that the cell membrane phospholipids are 
the main source of light scatter in tissues and the lipid 
removal is a potential approach for increasing the tissue 
transparency. Several techniques of the lipid removing 
transparency have been developed for the 3D imaging 
of tissues, including using acrylamide protocols such as 
CLARITY (12), passive CLARITY (2), PACT, PARS 
(13), and also without applying acrylamide methods 
including FASTClear (14) and Fast Free-of-Acrylamide 
Clearing Tissue (FACT) (15).

Some of these techniques use hydrogel embedding 
such as CLARITY and PACT. Not only are they costly, 
but they change the tissue volume even after using the 
refractive index matching solutions (RIMs). The complete 
tissue clearing needs several days to weeks to disrupt the 
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fluorescent signal of chemically labeled proteins and 
it cannot finally prevent the quenching of fluorescent 
protein signals for a long time. These hydrogel-based 
techniques also need further toxic chemicals, labor 
work and the equipment. Therefore, a simple technique 
is appropriate for laboratories in developing countries. 
One of these newly-developed simple techniques is 
the FACT (15) requiring the lower labor work, and the 
use of toxic and environmentally hazardous chemicals 
in comparison to acrylamide-based protocols. Another 
limitation in the developing countries is the lack of 
advanced microscopes, i.e. confocal, 2-photon and 
light sheet microscopes. To date, all of the introduced 
protocols for the 3D imaging of tissues have used the 
advanced microscopes. Adopting FACT approach with 
a conventional epifluorescent microscope was another 
goal of this study. 

Hopefully, this methodology may help in studying the 
brain vascular architecture for fundamental evaluation of 
pathological alterations in cerebral disorders including 
the vessels such as ischemia (16), Alzheimer’s disease 
(17), and cancer (18). Therefore, the aims of the present 
study were to evaluate the ability of the FACT protocol 
for clearing different whole tissue of mice and rats and 
3D imaging of the brain cortex vasculature with FACT 
method in mice using a simple epifluorescent microscope 
in a non-developed imaging lab.

Materials and methods
Animals

The present experimental study has been performed 
according to Shahid Sadoughi University of Medical 
Sciences Guidelines for Animal Handling and the Ethics 
Committee of Research and Clinical Center for Infertility 
(No: 91/8/2/2168). Adult female mice (n=3) and rats 
(n=3) were used and kept in Laboratory Animal Center 
of the Center of Infertility, Shahid Sadoughi University of 
Medical Sciences, Yazd, Iran. 

FACT protocol
The rats and mice were euthanized by ether inhalation 

and then cervical dislocation. The experiment protocol 
has been summarized in Figure 1. Then, tissues including 
the brain, spinal cord, heart, lung, adrenal gland, pancreas, 
liver, esophagus, duodenum, jejunum, ileum, skeletal 
muscle, bladder, ovary, and uterus were dissected out. They 
were separately transferred into 4% paraformaldehyde 
(PFA, Merck KCaA, Germany) diluted in phosphate-
buffered saline (PBS, Gibco, UK) solution (0.01 M) as 
a fixative solution (pH=7.5, room temperature). Tissues 
were fixed in the fixative solution at 4˚C for 3 days. Then, 
the brain was coronally 1 mm-sliced, coronally.

The whole and sliced tissues were cleared according 
to the FACT protocol (15). In details, the tissues were 
cleared with clearing solution containing 8% (wt/vol) 
sodium dodecyl sulfate (SDS) in 0.01 M PBS (pH=7.5) 
with 0.02% sodium azide at 37˚C with mild rotational 
horizontal shaking (100 r/minutes) in a shaker incubator 
(Jaltajhiz, Iran). The clearing solution was refreshed 
daily for 3 days and then was replaced weekly until 
the visual confirmation of 80% tissue transparency by 
an observation through the tissue of clear black grid 
lines printed on a white paper. Transparency of the 
tissue during the clearing procedure was imaged using 
a DP71 camera (Olympus, Japan) on a stage of a loop 
microscope (SZX16, Olympus, Japan) for background 
illumination. The start and end date of clearing were 
recorded for all tissues.

Imaging of auto-fluorescent vessels in brain cortex 

The brain slices were washed once in PBS with 0.02% 
sodium azide, and then were shaken gently 12 hours in the 
same solution at 37ºC in horizontally fixed falcon tubes. 
For complete transparency and refractive index (RI) 
matching, samples were placed in 80% glycerol in double 
distilled water for 3 to 12 hours in room temperature prior 
to imaging.

Fig.1: Protocol of clearing and imaging of brain cortex vasculature by Fast Free-of-Acrylamide Clearing Tissue (FACT) based on the presence of red blood 
cells and their auto-fluorescent signal. PFA; Paraformaldehyde, PBS; Phosphate buffer saline, and SDS; Sodium dodecyl sulfate.
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3D epifluorescent microscopy
For 3D imaging, brain slices were individually 

mounted between two glass slides which were 
surrounded by same thickness non-colorful putty that 
formed a horse-shoe-like chamber (1-mm thickness 
wall) to protect the tissues’ thickness from pressing 
between the slides and provides a chamber for the 
RI matching solution. This chamber between two 
slides was filled with fresh 80% glycerol. The auto-
fluorescent vessels were imaged by an epifluorescence 
microscope (BX51 with a DP72 camera, Olympus, 
Japan), and CellSens imaging software (Version 1.4.1, 
Olympus, Japan). After the apparatus was fixed on 
the microscope stage, the specimen was imaged by an 
air/dry objective lens 10× (UPlanSApo, Olympus Co. 
Ltd.; numerical aperture ‎: ‎0.4 and working distance: 
3.1 mm) which was water immersed to increase 
working distance. The EPI illumination mode and red 
excitation (650 nanometers) and deep red emission 
(690 nanometers) were applied for imaging. For this 
purpose, selected area was imaged on a z-stack manner 
(each 10-μm step) for the depth of 150 μm from the 
tissue surface, automatically.

3D image preparation
The TIFF image sequences were obtained from the 

microscope and transferred to Imaris software (version 
7.4.2, ImarisX64, Bitplane AG) for the 3D reconstruction 
(19). In details, after importing TIFF files, in the "Display 
Adjustment" tabs, the color and name of the channels 
were changed. Then, in the drop-down list under the 
"Edit" button and “Image Properties” panel, the thickness 
of the tissue was corrected according to the z-stack 
imaging information of an epifluorescent microscope. To 
3D crop, the final images and removing the excess parts, 
in the drop-down list under the "Edit" button and "Crop 
3D" option were used. The size of the field was adjusted 
by dragging the borders.

In the "Surpass" panel, vessels of brain cortex were 3D 
reconstructed using the filaments algorithm and based 
on the detected signals. In detail, a new Filament was 
created in the "Filaments" button. In the "Slice" panel, the 
thinnest and the largest diameter of the imaged vessels 
were defined. On the "Measure" panel, the distance 
automatically was shown after selecting two points at the 
maximum width of the thinnest and thickest vessels. After 
defining the largest and thinnest thickness, data were 
entered in the "Surpass" panel. Then, the thresholds of 
starting and seed points were adjusted. Tracing the length 
of vessels, using "Select" tab in the "Camera"panel, some 
of the automatically produced seed points were manually 
removed by pressing shift on the keyboard and left 
clicking on the point. The 3D image rotation was done by 
selecting "Navigate" and moving the pointer of the mouse 
device, to ensure that the correct seed points have been 
retained.

Then, the highest threshold for the local contrast was 

selected. At the last step, without the selection of "Detect 
Spines", the blood vessel reconstruction was finalized. 
The excess parts of the vessels which were not matched 
on the signals were removed in the "Edit" panel. The 
color of reconstructed cylinders was edited by clicking 
the "Color" tab.

Comparing antibody stained and auto-fluorescent 
vessels

Comparing the vessel imaging by non-antibody-based 
and antibody staining method, brain slices of non-perfused 
and perfused mice, respectively, were cleared using the 
FACT protocol. Then, both groups were labeled for CD31 
(a marker of blood vessels epithelium) and Hoechst 33342 
(marker of the cell nucleus).

In details, after clearing, the residual SDS was 
washed from the brains by slow shaking in PBS with 
0.1% Triton X-100 (PBST) for 24 hours at 37˚C. The 
samples were then incubated for 24 hours with anti-
CD31 primary antibody (1:10, mouse species, Abcam, 
USA) diluted in PBST with shaking at 37˚C. The 
samples were subsequently washed in PBST buffer 
for 24 hours with shaking at 37˚C. Then they were 
incubated with the FITC-IgG secondary antibody 
(Goat anti-mouse, 1:100, Abcam, US) diluted in PBST 
for 24 hours with shaking at 37˚C in a tube was covered 
with an aluminum sheet. To label cell nuclei, Hoechst 
33342 (1:100, Bis Benzimaide H 33342, Sigma, 
USA) was added to the secondary antibody mixture 
for the final 12 hours of incubation with shaking at 
37˚C. Before mounting and imaging, samples were 
washed in PBST for 24 hours with shaking at 37˚C. 
Samples were submerged in glycerol for 24 hours at 
room temperature. The antibody signals and auto-
fluorescent vessels were imaged by an epifluorescence 
microscope (BX51 with a DP72 camera, Olympus, 
Japan), and CellSens imaging software (Version 1.4.1, 
Olympus, Japan).

To evaluate the possibility of detection of vessels in 
other tissues by auto-fluorescence characteristics of the 
red blood cell (RBC), non-perfused spinal cord and uterus 
along with perfused skeletal muscle and duodenum of 
mice were stained with Hoechst 33342.

Results
Transparent brain slices were rapidly created with the 

passive clearing using the FACT protocol (Figs.2, 3). As 
shown in Figures 2 and 3, the FACT cleared the 1-mm thick 
brain slices in both mice and rats within 3 days (Table 1).

To 3D reconstruct the blood vessels architecture in 
the brain cortex of mice, a microvasculature containing 
red blood cells was subsequently examined by an 
epifluorescent microscope (Fig.4A). In addition, using 
Imaris Filament algorithm, the blood vessels were 
segmented (Fig.4B). The 3D reconstructed blood vessels 
in brain cortex of mice were shown in Figure 4C.
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 Table 1: Comparison of clearing time (day) of whole or sectioned tissues of mouse and rat with Fast Free-of-Acrylamide Clearing Tissue (FACT), passive
CLARITY, PACT, and mPACT methods

Tissue FACT Passive CLARITY PACT mPACT

Mouse Rat Mouse Rat Mouse Rat Mouse Rat

Brain slice (1-mm thickness) 3 3 4 (21) 6 (21, 25) 4-9 (13, 15) ND ND ND

Spinal cord (whole size) 7 12 14-28 (24, 26) ND 12 (30) 12 (30) 14 (30) 21 (30)

Heart (whole size) 66 ND ND ND 17 (30) 16 (30) 15 (30) 16 (30)

Lung (whole size) 21 21 30 (20) ND 18 (30) 18 (30) 14 (30) 18 (30)

Adrenal gland (whole size) ND 33 ND ND ND ND ND ND

Pancreas (whole size) 7 7 ND ND 15 (30) 15 (30) 17 (30) 15 (30)

Liver (one lobe) 6 37 30 (27) ND 22 (30) 23 (30) ND 23 (30)

Esophagus (whole size) 7 7 ND ND ND ND ND ND

Intestine (whole size) 7 7 12-30 (20, 28) ND 12-14 (28) ND ND ND

Bladder (whole size) 66 ND ND ND ND ND ND ND

Ovary (whole size) ND 66 35 (19, 29) ND ND ND ND ND

Uterus (whole size) 14 ND ND ND ND ND ND ND

ND; No data.

Fig.2: Clearing of mouse tissues using Fast Free-of-Acrylamide Clearing Tissue (FACT) including 1 mm brain slice, spinal cord, esophagus, lung, pancreas, 
bladder, uterus, heart, duodenum, jejunum, ileum (squares are 3×3 mm2). The clearing steps are before using refractive index solution (RIMs) and 
transparency is not more than 80%.
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Fig.3: Clearing of rat tissues using Fast Free-of-Acrylamide Clearing Tissue (FACT) including 1 mm brain slice, spinal cord, pancreas, skeletal muscle, lung, 
ovary, adrenal gland, esophagus, liver, duodenum, jejunum, and ileum (squares are 3×3 mm2). The clearing steps are before using refractive index solution 
(RIMs) and transparency is not more than 80%.

The FACT protocol could make transparent the different 
types of tissues of mice (Fig.2) and rats (Fig.3). For the 
whole organs of adult female mice and rats, the optimal 
passive clearing conditions were determined for the FACT 
and compared with the previous studies in Table 1.

In order to show the possibility of vessels to be 
imaged by a non-antibody-based method based on 
auto-fluorescent characteristics of the RBC and to 
confirm detectability of the vessels in this protocol to 
be imaged after the FACT technique, the brain slices 
of non-perfused and perfused mice were stained in the 
same staining condition and the same tube containing 
CD31. Using blue (WB) and green (WG) filter boxes, 
the auto-fluorescent RBC signals were detected in 
non-perfused vessels of the brain cortex (Fig.4D). 
There were no vessels in the image of WB filter which 

were not visible in WG filter, too. This phenomenon 
showed that the auto-fluorescent RBC signals and 
CD31-labeled vascular endothelium were completely 
overlapped. In contrast, in perfused mice (Fig.4E), 
FITC-labeled CD31 markers on vascular endothelium 
were only observable in WB filter. In the both non-
perfused and perfused mice, vascular endothelium 
nuclei line-shaped structures were visible by Hoechst 
33342 staining.

Using a similar method of non-antibody-based 
detection of vessels, we evaluated the imaging of 
the FACT-cleared spinal cord (Fig.5A) and uterus 
(Fig.5B) in non-perfused mice. Furthermore, imaging 
of duodenum and skeletal muscle in perfused mice 
after clearing by the FACT technique did not show any 
vascular structures (Fig.5C).
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Fig.4: Fast Free-of-Acrylamide Clearing Tissue (FACT) technique for three-dimensional (3D) imaging of blood vessels in brain cortex using an epifluorescent 
microscope. A. A 3D image of the mouse blood vessels by the FACT clearing protocol. The fluorescent signal is from auto-fluorescent heme in red blood cells in 
the non-perfused blood vessels (tissue dimension XYZ=2000×1200×150 μm3) (scale bar: 300 μm), B. Using Imaris software and “Filament” algorithm of “Surpass”, 
vessels’ structure was reconstructed (scale bar: 300 μm), C. 3D segmentation of cortex blood vessels in 150 μm depth of cortex (scale bar: 300 μm), and D, E. 
Comparison of imaging of brain cortex vessels by non-antibody-based and antibody staining method, in brain slices of non-perfused and perfused mice, D. In non-
perfused brain similarity of the architecture of vessels were imaged with WB and WG filters demonstrates that RBC signals have been completely overlapped with 
CD31-labeled vasculatures (scale bar: 100 μm), E. In perfused mice, vessels are observable with WB filter. Arrows demonstrate vessels (scale bar: 100 μm).

Fig.5: Vascular imaging after Fast Free-of-Acrylamide Clearing Tissue (FACT) technique. A. Imaging of spinal cord vessels by a non-antibody-based method 
in the non-perfused mice (scale bar: 200 μm). Arrows demonstrate auto-fluorescent vessels, B. Imaging of vessels in the uterus and attached broad 
ligament by a non-antibody-based method in the non-perfused mice (scale bar: 200 μm). Arrows demonstrate auto-fluorescent vessels, and C. Imaging of 
duodenum and skeletal muscle in the perfused mice after clearing by Fast Free-of-Acrylamide Clearing Tissue (FACT) technique and labeling with Hoechst 
33342 (scale bar: 400 μm). Arrow alludes to vascular branches.
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Discussion
For the first time, we demonstrated the clearing of 

the murine tissues  with the FACT protocol (15) for the 
effective clearing of tissues and 3D imaging of brain 
cortex vasculatures. The FACT method, has been modified 
including alterations of imaging to adapt this method for 
non-equipped laboratories. Although the most important 
part of the whole tissue clearing is optical sectioning for 
3D imaging and this can be optimally achieved by confocal 
microscopy, availability of this expensive microscope is a 
big challenge for adapting the whole tissue imaging for a 
conventional laboratory of limited resources. Therefore, 
in the present study of the FACT method we used an 
epifluorescent microscope with a motorized stage for 
imaging auto-fluorescent vessels in the z-plane. Bearing 
in mind that this approach has some limitations including 
a lower depth of imaging of fluorescent light in an 
epifluorescent microscope in comparison to a laser in a 
confocal microscope. This issue can be solved by cutting 
1- to 2-mm piece of cleared tissue for imaging. Moreover, 
a lower power of the epifluorescent for collecting the 
enhanced signals in comparison to the laser-enhanced 
fluorophores in confocal caused limitation in imaging of 
tissue for the maximum depth of 200 to 300 μm.

The FACT cleared 1-mm of thick brain slices in both 
mice and rats in 3 days, while in mice and rats a passive 
CLARITY needs 4 and 6 days, respectively and PACT 
requires 9 days in mice . Regarding the clearing time, the 
whole brain slice (1 mm thickness) clearing in murine 
species with the FACT protocol as a passive method 
required 3 days for completion which is comparable to 
CUBIC (more than 1 week) (9) and ScaleA2 (5 days) (4). 
In addition, based on Xu et al. (15) and comparing of our 
data with previous studies, we can speculate that removing 
hydrogel decreased the clearing time in comparison to 
hydrogel-based methods such as CLARITY (2), PACT, 
PARS (13), and SWITCH (10). The CLARITY technique 
has been used for clearing the different murine tissues 
including the brain (2, 20-25), spinal cord (21, 24, 26), 
heart (22), lung (20, 22), liver (27), intestine (20, 28), 
skeletal muscle (22), and ovary (19, 29). In addition, 
several studies cleared different murine tissues using 
PACT protocol including the brain (13, 22, 30, 31), heart, 
lung (13, 22, 30), pancreas, liver (30), intestine (13, 
28), skeletal muscle (22), adrenal gland (20), and ovary 
(30). In addition to above-mentioned tissues which were 
cleared by acrylamide-based protocols (32), using FACT 
protocol, the other murine tissues including bladder, 
uterus, and esophagus have been cleared for the first time 
in this study.

Brain vasculature imaging at microscopic scales 
and imaging deep into brain remained an open 
quest in neuroscience. Although, the conventional 
optical microscopy is still limited to surface imaging. 
Revolutionary approaches such as ultrasonography (33), 
intravital microscopy (34), and the whole tissue imaging 
by an optical microscope (35) have opened new windows 
in this aspect. The whole tissue clearing such as our 

findings, can show the 3D architecture of the blood vessels 
and also can be used for seeking vasculature relationships 
in neurons (23). 

Epifluorescent, confocal and light sheet microscopy 
provide more information for the vasculature research 
in the brain because of the presence of various vascular 
endothelial markers such as CD31, CD34, factor VIII, 
von Willebrand factor, and Fli-1 that can be used in these 
imaging methods especially, in whole tissue imaging 
(36). In addition to mentioned markers which can be 
detected by chemical or genetic labeling methods for the 
detection of brain vasculature (36, 37), other fluorescent 
materials have been also used for imaging of the brain 
vasculature (38). In the present study, we used the auto-
fluorescent character of heme in red blood cells (39) in 
a non-perfused brain for the visualization of the blood 
vessels in the FACT-cleared mouse brain, spinal cord, and 
uterus.

Conclusion
The FACT method is a simple technique which might be 

appropriate for laboratories in developing countries lacking 
advanced microscopes such as confocal microscopes. 
Successful labeling the vessels in murine species after 
clearing by the FACT approach resulted in 3D imaging 
of brain cortex vessels for the first time. Imaging the 
vasculature was performed without any staining; rather 
accomplished by a simple auto-fluorescence imaging of 
the RBC.
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