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Abstract
Objective: Druggability of a target protein depends on the interacting micro-environment 
between the target protein and drugs. Therefore, a precise knowledge of the interacting 
micro-environment between the target protein and drugs is requisite for drug discovery 
process. To understand such micro-environment, we performed in silico interaction analy-
sis between a human target protein, Dipeptidyl Peptidase-IV (DPP-4), and three anti-dia-
betic drugs (saxagliptin, linagliptin and vildagliptin).

Materials and Methods: During the theoretical and bioinformatics analysis of micro-en-
vironmental properties, we performed drug-likeness study, protein active site predictions, 
docking analysis and residual interactions with the protein-drug interface. Micro-environ-
mental landscape properties were evaluated through various parameters such as binding 
energy, intermolecular energy, electrostatic energy, van der Waals’+H-bond+desolvo 
energy (EVHD) and ligand efficiency (LE) using different in silico methods. For this study, we 
have used several servers and software, such as Molsoft prediction server, CASTp server, 
AutoDock software and LIGPLOT server.      
Results: Through micro-environmental study, highest log P value was observed for lina-
gliptin (1.07). Lowest binding energy was also observed for linagliptin with DPP-4 in the 
binding plot. We also identified the number of H-bonds and residues involved in the hydro-
phobic interactions between the DPP-4 and the anti-diabetic drugs. During interaction, two 
H-bonds and nine residues, two H-bonds and eleven residues as well as four H-bonds and 
nine residues were found between the saxagliptin, linagliptin as well as vildagliptin cases 
and DPP-4, respectively.                  
Conclusion: Our in silico data obtained for drug-target interactions and micro-environ-
mental signature demonstrates linagliptin as the most stable interacting drug among the 
tested anti-diabetic medicines.          
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Introduction
Productivity of the pharmaceutical industry 

revolves around the discovery of new 
pharmaceutical entities (NMEs). It has been 
observed that Food and Drug Administration 
(FDA), approved NMEs, are shrinking with 
the passage of time. Therefore, current rate of 
productivity of pharmaceutical industries is 
alarming and development of new NMEs is 
the contemporary call from the pharmaceutical 
industries (1). In depth understanding of drug 
target can help us to develop the quality of NMEs 
at a faster rate and thus may contribute to fulfill 
the increasing demand of new feasible NMEs 
for the pharmaceutical industry. Henceforth, 
several pharmaceutical companies are taking new 
initiatives in this direction. One such example is 
Bayer Health Care’s 'Grants4Targets' initiative, 
launched in year 2009. In this proposal, company 
campaigned to provide drug discovery knowledge 
and support academic world for assessment and 
validation of novel drug targets (2, 3).

Drug discovery through target evaluation and 
validation has already shown a pathway toward 
major successes. It has been observed that several 
drugs are developed after understanding that 
human target proteins are currently available in 
the market and numerous other drug targets are 
being identified in this prospective. Indeed, a 
number of current human drug targets interacting 
with small molecules, approximately 200 to 500 
in terms of quantity, have been identified and 
confirmed from the literature (4). In the year 1996, 
Drews (5) was the first to analyze potential target 
proteins in humans as well as in pathogens, and 
reported about 483 target proteins. Thereafter, 
in 2002 Hopkins and Groom performed another 
analysis and identified 399 molecular targets from 
130 protein families. This study described the 
molecular targets and their ligands having drug-
like properties (6). Consequently, Golden (7, 8) 
projected that all of the approved drugs which is 
available in the market act through 273 proteins. 
In 2006, another group of researchers documented 
about 218 molecular targets for approved drugs 
(9). However, Zheng et al. (10, 11) recorded 268 
'successful' targets from the therapeutic targets 
database and Overington et al. (12) suggested a 
compromise number of 324 drug targets from all 
classes of approved drugs for only therapeutic 

purposes. The theory of druggable targets, 
projected by Hopkins and Groom (6), is crucial for 
drug discovery and is based on the 'rule-of-five' 
analysis of drug-likeness as proposed by Lipinski 
et al. (13). It has been revealed that approximately 
60% of small molecule drug discovery projects 
were not successful, since the target was found to 
be non-druggable.

Druggable targets and the targetability of drugs 
are the two most significant factors required to 
determine the efficacy of new small molecules (14, 
15). Thomson Reuters Life Science Consultancy 
(Pharma Consulting Services) has investigated 
unsuccessful phase II projects of drug discovery 
during 2008 to 2010 and noted that about 51% 
of failures occurred due to insufficient efficacy 
of newly discovered drugs (16). It means that, 
interaction efficacy between drug-like molecule 
and druggable target were not appropriate. It is well 
known that micro-environmental signature of the 
interactions between druggable target protein and 
the drug is the most crucial event for its medicinal 
activity. Therefore, a detailed understanding of 
the micro-environmental landscape interaction 
between druggable target proteins and drugs is a 
prerequisite for successful drug discovery.

The interaction landscape of target protein and drug 
depends on peculiar micro-environmental factors 
such as binding energy, intermolecular energy, 
electrostatic energy, van der Waals’ interaction 
energy, Hydrogen (H)-bond, desolvo energy and 
ligand efficiency (17). One of the important factors 
during interaction is binding energy; it can help 
to understand the binding affinity between target 
and drug (18). Intermolecular force between two 
molecules is another micro-environmental factor. 
Leckband (19) described a vital role of intermolecular 
forces or energy during protein interaction with 
ligand complex. Through analysis of binding sites, 
researchers can illustrate binding affinity between 
any two molecules. It has been observed that high-
affinity for drug and target binding results from 
the greater intermolecular force. On the other 
hand, low-affinity ligand binding involves less 
intermolecular force between drug and target (20). 
Furthermore, another imperative factor during 
interaction is electrostatic communication between 
cations and anions. It can be measured during 
functional analysis of biological molecules (21).  
It is well known that van der Waals’ interaction 
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energy represent a sum up of the attractive forces 
or repulsive forces between the molecules. 
H-bonds are also a significant factor to understand 
the micro-environment interaction. Significance 
of H-bonds during target-drug interaction have 
already been described (22). Ligand efficiency, 
capacity of binding energy per atom unit, has lately 
emerged as a useful guide to lead selection in the 
drug discovery process (23). All of these factors 
have been described from time to time either as 
a single factor or in combination. However, how 
all of these factors optimize interactions between 
drug-target, especially in anti-diabetic drugs has 
not properly been analyzed.

Throughout this decade, diabetes is a severe 
health crisis and the number of diabetes patients 
is growing worldwide at an alarming rate (24). 
Currently, in both types 1 and 2 diabetes, 366 
million people are affected around the world 
(25) and it is predicted to increase up to 552 
million by 2030. It has been noted that 90-95% 
of population, among the total diabetes, are 
suffering type 2 diabetes (T2D) (26). Current 
treatments for T2D include administration of 
several therapeutic agents as well as endeavoring 
to modify lifestyle. Among the various available 
line of treatment for T2D, "incretins" is one of 
the best available choices. Incretins are a class of 
gastrointestinal hormones that directly stimulates 
insulin secretion and decreases glucose level. This 
class of gastrointestinal hormones comprises of 
two hormones, including glucagon-like peptide-1 
(GLP-1) and glucose-dependent insulinotropic 
polypeptide (GIP, also called gastric inhibitory 
polypeptide), with an anti-diabetic role for both of 
them. These hormones increase insulin secretion 
and helps in proliferation of pancreatic β-cell.  
But, dipeptidyl peptidase-IV (DPP-4) can degrade 
GLP-1 and GIP protein molecules, quickly (27). 
Hence, DPP-4 is a major drug target for treating 
T2D.  Regarding that some anti-diabetic drugs (e.g. 
sitagliptin, vildagliptin, saxagliptin, linagliptin) 
act as an inhibitor of the DPP-4, they are preferred 
by the physician in the management of T2D (28).

In this article, we tried to understand micro-
environmental signature of interactions between 
druggable target, DPP-4, and three anti-diabetic 
drugs (i.e. saxagliptin, linagliptin and vildagliptin). 
For that, we firstly analyzed drug-likeness of our 
selected anti-diabetic drugs and the predictive active 

site on the targeted protein. For depiction of micro-
environmental landscape during these interactions, 
we have evaluated different micro-environmental 
parameters such as binding energy, intermolecular 
energy, cumulative sum of electrostatic energy, van 
der Waals’+H-bonds+desolvo energy (EVHD) and 
ligand efficiency (LE). Finally, we analyzed the 
residual interactions at the protein-drug interface 
between DPP-4 and three anti-diabetic drugs.

Materials and Methods
Target protein and drugs section

In order to understand the interacting micro-
environmental signature involved in drug-target 
binding, a theoretical and bioinformatics study was 
performed. For this purpose, we selected a target 
protein, human DPP-4, as diabetes drug target. 
DPP-4 format file (pdb id: 1j2e) was retrieved 
from Protein Data Bank (PDB, www.rcsb.org) for 
further analysis (29).

Three existing anti-diabetic drugs and inhibitors 
of DPP-4 (saxagliptin, linagliptin and vildagliptin) 
were selected for this study. Drug information 
(including 3D or 2D structure, and canonical 
SMILES data) were obtained from drug bank 
database (30), as well as PubChem.

Drug-likeness analysis of the selected anti-diabetic 
drugs

Drug-likeness and molecular properties of 
three existing anti-diabetic drugs were calculated 
using Molsoft prediction server (http://molsoft.
com/mprop/) (31). Canonical SMILES data from 
PubChem server was used as an input data for 
Molsoft prediction server, and drug-likeness 
proprieties were analyzed. 

Protein active site predictions
Prediction of the active site residues was analyzed 

by using computed atlas of surface topography of 
proteins (CASTp) web software (http://cast.engr.
uic.edu) (32). CASTp predicts specific amino acid 
positioning within proteins surface through Swiss-
Prot mapping method as well as Online Mendelian 
Inheritance in Man (OMIM) mapping method (33, 
34). Finally, we selected some active site residues 
for further studies: SER630, TYR631, HIS740, 
ASP708, and TYR547. These preferred residues 
were used for docking analysis between DPP-4 
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and the implicated anti-diabetic drugs.

Docking analysis and interactions of micro-
environment 

To understand micro-environment of the 
interactions between druggable target protein 
(DPP-4) and anti-diabetic drugs, we performed 
protein-drug interactions using docking analysis. 
Molecular docking was carried out by utilizing 
AutoDock (version 4.2.5.1.) software which 
uses Lamarckian Genetic Algorithm (LGA) (35). 
LGA was adopted as a search parameter, derived 
from adaptive local search. AutoDock-Tools 
1.5.6rc3 were used to prepare the protein, ligand, 
grid parameter file, docking parameter file and 
to visualize docked structure. Here, free energy 
during binding has also been analyzed. Thus, it 
is equal to the variation between i. The energy of 
ligand and protein in unbound state and ii. The 
energy of ligand–protein complex. Force field 
incorporates six pairwise evaluations (V) and was 
calculated as the conformational entropy lost upon 
binding ( ΔS conf), approximately:
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Weighting constants=W. It is used to 
standardize the empirical free energy in a place of 
experimentally described complexes.

All water molecules and bound ligand 
N-acetylglucosamine (NAG) have been removed 
from the original PDB file. H atoms have been 
added to the protein crystal structure and non-
polar H atoms have been merged. Gasteiger 
charges were assigned to the ligand and all torsions 
were accepted to rotate during docking. The grid 

maps of docking studies were generated using 
the AutoGrid4 which was implemented in the 
Autodock4 distribution. Grid center was placed 
in the middle of the receptor and grid dimensions 
were 126×88×88 along X, Y, and Z-axis with 
points separated by 0.442Å. Short range van der 
Waals’ and electrostatic interactions, H-bonding 
and entropy losses were included for energy 
based autodock scoring function. Hundred 
autonomous docking runs were performed for 
each ligand molecules. The other parameters 
for the genetic algorithm (GA) were defined as 
follows: population size 150; maximum number 
of 2500000 energy evaluations; mutation; a 
maximum number of generations of 27,000 and 
crossover rates of 0.02 and 0.8, correspondingly. 
Rigid docking was performed for this analysis. 
We also analyzed micro-environmental factors 
such as binding energy, intermolecular energy, 
electrostatic energy, EVHD and LE.

Analysis of residual interactions at the protein-
drug interface

Thereafter, residual interactions at the protein-
drug interface with all selected drug models were 
evaluated using LIGPLOT (v.4.5.3) program, 
which can plot protein-drug interactions (36, 
37). Through LIGPLOT, we can demonstrate 
those interaction points in the plot where 
H-bonds and hydrophobic contacts intercede. In 
the plot, H-bonds are shown through the dashed 
lines between the involved atoms. On the other 
hand, hydrophobic contacts are symbolized by 
an arc with spokes radiating in the direction 
of ligand atoms where they make contact. The 
contacted atoms are symbolized with spokes 
radiating back.

Results
Target protein and drugs

Structure of target protein DPP-4 was determined 
with software Jmol (Fig.1A). The tertiary structural 
components like alpha-helixes and beta pleated-
sheets, beta hairpins, beta bulges, beta turns and 
disulfide bonds of DPP-4 were also observed 
(Fig.1B). Meanwhile, 2D structures of saxagliptin, 
linagliptin and vildagliptin were also generated 
(Fig.2A-C, respectively). Similarly, 3D structures 
of saxagliptin, linagliptin and vildagliptin were 
analyzed and noted in Figure 2D-F, respectively.
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Fig.1:  Analysis of target structures in our study. A. The structure of Dipeptidyl Peptidase-IV (DPP-4) with active sites and B. Various 
secondary structural elements presented in DPP-4.

A

B
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Fig.2: Structure of different anti-diabetic drugs used in our study. A. 2D structure of saxagliptin, B. 2D structure of linagliptin, C. 2D struc-
ture of vildagliptin, D. 3D structure of saxagliptin, E. 3D structure of linagliptin, F. 3D structure of vildagliptin, G. Mol PSA (A2) variation for 
three anti-diabetic drugs showing that linagliptin has highest Mol PSA, and H. MolVol (A3) variation for three anti-diabetic drugs showing 
that linagliptin has highest MolVol.
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D E
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Drug-likeness analysis

Drug-likeness is used to comprehend the drug like 
properties of a molecule, theoretically. The drug-
like molecule possesses a logarithm of the partition 
coefficient called log-P and the value usually lies 
between the range of 0.4 and 5.6. This property 
can be utilized to predict the drug like property for 

any molecule and it is extensively accepted among 
medicinal chemists (38). In calculation of log-P 
value for saxagliptin, linagliptin and vildagliptin, 
we respectively observed a score of 0.77, 1.07 and 
0.49 (Fig.3).  MolLogP, MolLogS, Mol PSA and 
MolVol of these three drugs are recorded in the 
Table 1. Among these drugs, highest log-P value 
was observed for linagliptin (1.07).

Fig.3: Drug-likeness models of our selected anti-diabetic drugs. A. Drug-likeness models of saxagliptin, B. Drug-likeness models of linaglip-
tin, and C. Drug-likeness models of vildagliptin.

Table 1: Molecular properties of three anti-diabetic drugs

Molecular properties and drug-likeness Saxagliptin Linagliptin Vildagliptin

Molecular formula C18 H25 N3 O2 C25 H28 N8 O2 C17 H25 N3 O2

Molecular weight (g/mol) 315.19 472.23 303.19

Number of HBA 4 6 4

Number of HBD 3 2 2

MolLogP [in Log(g/mole)] 0.05 1.89 1.28 

MolLogS -3.56 [in Log(moles/L)]
86.44 (in mg/L)

-2.90 [in Log(moles/L)]
591.20 (in mg/L)

-4.38 [in Log(moles/L)]
12.59 (in mg/L)

 HBA; Hydrogen bond acceptors and HBD; Hydrogen bond donors.

A B C
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Active sites and micro-environment of DPP-4 
and anti-diabetic drug interactions 

Various possible active site residues on druggable 
target protein DPP-4 was calculated, which is noted 
in the supplementary Table 1. We have selected five 
active site residues for further interaction studies. 
In our analysis, micro-environmental factors 
such as binding energy, intermolecular energy, 
electrostatic energy, EVHD and LE of the drugs and 
DPP-4 were evaluated.

Binding energy
Binding energy is the energy required for binding 

of any two molecules and henceforth it is also vital 
for interactions between any drug and target protein. 
A little amount of the binding energy is obligatory 
during drug and target protein interaction, leading to 
the conformational changes (39). Therefore, binding 
energy and at least ten binding conformations of DPP-
4 with saxagliptin (Fig.4A, B), linagliptin (Fig.5A, B) 
and vildagliptin (Fig.6A, B) from the binding energy 
frame was analyzed. With the purpose of comparing 
binding energy between DPP-4 and any of saxagliptin, 
linagliptin and vildagliptin, we have plotted three 
binding energies (Figs.4A, 5A, 6A) altogether in 
a single frame as shown in the Figure 7. Upon 
comparing, lowest binding energy was determined for 
linagliptin with DPP-4 binding plot, after hundreds of 
docking runs. On the other hand, the overall binding 
energy of saxagliptin appears to be low with DPP-4 as 
evidenced from plot after hundreds of docking runs.

Intermolecular energy 
Intermolecular energy denotes type of interactions 

between drugs and residues in a target, while no 
atomic bond is formed during these interactions. 
A drug when binds into a protein binding site 
contains intermolecular translation, rotation and 
intramolecular conformational changes (40).  The 
intermolecular energy during the interaction of 
DPP-4 with saxagliptin, linagliptin and vildagliptin 
is recorded in the Figure 8A-C, respectively.

Electrostatic energy 
Electrostatic interactions are one of the important 

factors for drug target as well as for drug binding. For 
computer-based understanding of protein energies, 
electrostatic energy is one of the crucial factors which 
should be considered to understand the biological 
function of a molecule (21). Therefore, electrostatic 
energy during interaction of DPP-4 with saxagliptin, 

linagliptin and vildagliptin was analyzed and are 
recorded in the Figure 9A-C, respectively.

Van der Waals’+H-bond+desolvo energy 
Van der Waals interactions are perhaps the most 

basic type of interactions that exists between any 
two molecules (41). Free energy changes (ΔG) are 
an amalgamation of changes in enthalpy (ΔH) and 
entropy (ΔS) together, and both enthalpy and entropy 
must be measured during the time of binding (42). 
Through interaction, EVHD of DPP-4 with saxagliptin, 
linagliptin and vildagliptin was observed (Fig.10A-C, 
respectively).

Ligand efficiency 
LE metrics help to understand the molecular 

properties which are required to calculate binding 
affinity for a drug target. Thus, it has a great role 
in improving the quality of drug during current 
drug discovery practices (43). LE metrics can be 
defined mathematically, as follow:
LE=(ΔG)/N

Actually LE is the ratio of Gibbs free energy 
(ΔG) to the number of non-hydrogen atoms of the 
compound (N), while we consider that ΔG=-RTlnKi 
(44). The equation can be altered as follow (45):
LE=1.4(-logIC50)/N 

During the interaction, LE of DPP-4 with 
saxagliptin, linagliptin and vildagliptin was 
measured and illustrated in the Figure 11A-C, 
respectively.

Analysis of residual interactions at the protein-
drug interface 

The binding site of ligands, saxagliptin, 
linagliptin and vildagliptin, are shown in the Figure 
12A-C, respectively. LIGPLOT (protein ligand) 
diagrams showed interaction between drugs and 
active site residues of protein using H-bonding and 
hydrophobic contacts. Here, we have calculated 
the numbers of H-bonds that are formed between 
the active site of DPP4 and drugs. These are two, 
in terms of the number, in the case of DPP-4 and 
saxagliptin interaction (Fig.12A); two in the case 
of DPP4 and linagliptin interaction (Fig.12B) and 
four in the case of DPP4 and vildagliptin interaction 
(Fig.12C). Some residues are also involved in few 
hydrophobic interactions in all cases.
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Fig.4: Binding energy during interaction of saxagliptin with Dipeptidyl Peptidase-IV (DPP-4). A. Plotted binding energy for hundred auton-
omous docking of saxagliptin with DPP-4 and B. Ten chosen conformations from hundred autonomous docking in DPP-4 and saxagliptin 
interface.
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Fig.5: Binding energy during interaction of linagliptin with Dipeptidyl Peptidase-IV (DPP-4). A. Plotted binding energy for hundred au-
tonomous docking of linagliptin with DPP-4 and B. Ten chosen conformations from hundred autonomous docking in DPP-4 and linagliptin 
interface.
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Fig.6: Binding energy during the interaction of vildagliptin with Dipeptidyl Peptidase-IV (DPP-4). A. Plotted binding energy for hundred 
autonomous docking of vildagliptin with DPP-4 and B. Ten chosen conformations from hundred autonomous docking in DPP-4 and vilda-
gliptin interface.

A

B
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Fig.7: Comparison of three plotted binding energies (saxagliptin, linagliptin and vildagliptin with DPP-4) exposed in a single frame. 
DPP-4; Dipeptidyl Peptidase-IV (DPP-4).

Fig.8: Plotted intermolecular energy for three anti-diabetic drugs during interaction with Dipeptidyl Peptidase-IV (DPP-4). A. Plotted in-
termolecular energy for saxagliptin during interaction with DPP-4, B. Plotted intermolecular energy for linagliptin during interaction with 
DPP-4, and C. Plotted intermolecular energy for vildagliptin during interaction with DPP-4.

A

B
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Fig.9: Plotted electrostatic energy for three anti-diabetic drugs during interaction with Dipeptidyl Peptidase-IV (DPP-4). A. Electrostatic 
energy plot for saxagliptin during interaction with DPP-4, B. Intermolecular electrostatic plot for linagliptin during interaction with DPP-4, 
and C. Plotted electrostatic energy for vildagliptin during interaction with DPP-4.

A

B
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Fig.10: Plotted EVHD for anti-diabetic drugs. A. Plotted EVHD for saxagliptin, B. Plotted EVHD for linagliptin, and C. Plotted EVHD for 
vildagliptin.
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Fig.11: Plotted ligand efficiency for three anti-diabetic drugs during interaction with Dipeptidyl Peptidase-IV (DPP-4). A. Plotted ligand 
efficiency for saxagliptin, B. Plotted ligand efficiency for linagliptin, and C. Plotted ligand efficiency for vildagliptin.
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Fig.12: Residual interactions at Dipeptidyl Peptidase-IV (DPP-4) protein-anti-diabetic drug interface. A. Residual interactions at the DPP-
4-saxagliptin interface, B. Residual interactions at the DPP-4–linagliptin interface, and C. Residual interactions at the DPP-4–vildagliptin 
interface.

A B
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Discussion
In the middle of 1990s, inactivation of GLP-1 

receptor through DPP-4 was recognized. After 
invention, GLP-1-based treatment for T2D had 
been paid substantive attention (25, 46). Using 
DPP-4 as drug target, several anti-diabetic 
drugs were developed especially, sitagliptin 
(brand name: Januvia), saxagliptin (brand name: 
Onglyza), linagliptin (brand name: Tradjenta) and 
alogliptin (brand name: Nesina). All of these drugs 
are already available and administered in clinical 
practices (47). In this study, we used three drugs 
(i.e. saxagliptin, linagliptin and vildagliptin) to 
understand the micro-environmental signature of 
the interactions with target DPP-4.

Researchers from two pharmaceutical companies 
(i.e. Pfizer and Vertex) described the character 
and structural appearance of any molecule which 
may render them more or less drug like properties 
(48, 49). During process of drug discovery, the 
objective of drug-likeness analysis is to apply 
absorption, distribution, metabolism and excretion 
(ADME). Drug-likeness analysis is a crucial step 
before pre-clinical development to avoid costly 
experiments and to make the process more cost 
effective (50).

The "rule-of-five" indicated that most of the 
orally administered drugs have to possess the 
following five properties: i. Molecular weight 
(MW) should be 500 g/mol or less, ii. log-P value 
should not be higher than five, iii. Presence of five 
or fewer H-bond donor sites, iv. Presence of 10 or 
less H-bonds in the acceptor sites (in case Nitrogen 
and Oxygen atoms), and v. Poor permeability, if 
any of the mentioned factors exceeds the indicated 
limits (50). Moreover, it is also very difficult for 
central nervous system applicable compounds to 
cross over blood brain barrier and reach the target 
site. In general, drug like properties can at least 
predict a compound to possess basic drug like 
characteristics and thus it can make the process 
more economical. Here, in this study all three 
tested drugs demonstrated a score lying well 
within the range of drug-like properties. Data of 
drug-likeness models revealed that linagliptin has 
the highest drug like score and properties among 
all tested drugs.

Binding a drug with its target protein sites 
is the event which directly relates to the 

medicinal activity it possess.  Anti-diabetic drugs 
(saxagliptin, linagliptin and vildagliptin) bind 
with target protein DPP-4 leading to anti-diabetic 
activity. Currently, it is a major challenge for 
drug designing process that drugs or drug like 
compounds selectively binds to their proper target, 
while it should not cause any side-effect by binding 
to the other similar receptors (13, 51). The amount 
of anti-diabetic drug and target protein, DPP-4, 
as well as the ultimate complex formed by them 
determines the anti-diabetic activity displayed 
by that compound. The formed complex can be 
described by the equilibrium binding expression 
as shown below:

Anti-diabetic drug+DPP-4 ⇌ Anti-diabetic drug.DPP-4

         
[Anti-diabetic drug. DPP-4]

[Anti-diabetic drug] [DPP-4]
Keq =

The value Keq is identical to Ka (association 
constant) and Kb (binding constant), and therefore:

 Keq=Ka=Kb.

Binding of drugs with their targets in the cell 
depend on the interactions formed by micro-
environmental factors, such as the formation 
of energetically favorable bonding interactions 
between two partners. The equation for the free 
energy of binding (ΔG) to Keq is shown below:

_ RTInK eqΔG =

         
Here, R is the gas constant (1.987 calK-

1mol-1) and T is the absolute temperature, which 
is generally considered as room temperature, 
298.15˚K (52). In this equation, the inhibition 
constant is denoted for the dissociation reaction 
which is EI E+I , whereas DGobs refers as the 
reverse process of binding, E+I  EI; where E is the 
enzyme and I is the inhibitor. The free energy of 
binding (ΔG) is equal to:

_ RTInK eqΔG =

ΔH is the enthalpy of binding and represents the 
energetic gains of existing bonds. S is the entropy 
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of binding and is used to calculate disorder in 
the system (18). Previously, Metzler et al. (53) 
described the inhibition of DPP-4 by saxagliptin 
through formation of a histidine-assisted covalent 
bond but reversible complex.  Here, we have 
described the interaction energies between ligand 
drugs (saxagliptin, linagliptin and vildagliptin)-
receptor (DPP-4) and have analyzed a free energy-
based expression. During these interactions, 
we observed that binding energy for DPP-4 and 
linagliptin was lowest among these three ligands. 
Therefore, linagliptin and DPP-4 is proposed to 
form a more stable interaction.

Furthermore, we recorded the number of 
involved residues during drug-protein interaction. 
We observed that the residues like Arg125, 
Glu205, Trr661, Ser630, Tyr631, Tyr666, Asn710, 
Val711 and His740 were involved in hydrophobic 
interactions for DPP-4 and saxagliptin. Similarly, 
the residues involved in hydrophobic interactions 
for DPP-4 and linagliptin were Glu191, Lys122, 
Trp124, Tyr238, Lys250, Thr251, Val252, 
Arg253, Val254, Ala707, and Asp739. Involved 
residues in hydrophobic interactions of DPP-4 and 
vildagliptin were Trp124, Trp195, IIe198, Thr199, 
Asp200, Trp201, Trp211, Val252, and Val254. 
Here, we found that more residues were involved 
in hydrophobic interactions than H-bond formation 
for the studied protein–drug interaction. This result 
corroborates with our previous observations (25).

Conclusion
Druggability of a target protein is its ability to 

be modulated as drug-like molecule. Here, we 
have tried to understand the druggability of DPP-
4 to depict micro-environmental signature of the 
interactions between target protein and drugs. DPP-
4 is a confirmed and validated target for treatment 
of T2D which has received significant interest 
from the pharmaceutical companies over the last 
few years. Our in silico analysis for drug-target 
interaction demonstrated that linagliptin possess 
lowest binding energy with DPP-4 among the 
tested anti-diabetic drugs (saxagliptin, linagliptin 
and vildagliptin). Taken together, linagliptin 
appears to be the best available drug among 
three anti-diabetic drugs with reference to the 
drug-target interactions and micro-environmental 
signature point of view. 

We hope that diabetic patients will be benefited 

soon once we understand a stable interaction 
between an anti-diabetic drug and target. Other 
than that, our model is important for the target 
selection phase as well as small molecule 
selection phase. This effective inhibitor micro-
environmental signature model of DPP-4 may 
yield several new compounds toward discovery 
of new anti-diabetic drugs.
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