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Abstract
Objective: The extracellular matrix (ECM) of the cumulus oocyte complex (COC) is composed of several molecules 
that have different roles during follicle development. This study aims to explore gene expression profiles for ECM and 
cell adhesion molecules in the cumulus cells of polycystic ovary syndrome (PCOS) patients based on their insulin 
sensitivity following controlled ovarian stimulation (COS).  
Materials and Methods: In this prospective case-control study enrolled 23 women less than 36 years of age who 
participated in an intracytoplasmic sperm injection (ICSI) program. Patients were subdivided into 3 groups: control (n=8, 
fertile women with male infertility history), insulin resistant (IR) PCOS (n=7), and insulin sensitive (IS) PCOS (n=8). We 
compared 84 ECM component and adhesion molecule gene expressions by quantitative real-time polymerase chain 
reaction array (qPCR-array) among the groups.         
Results: We noted that 21 of the 84 studied genes differentially expressed among the groups, from which 18 of these 
genes downregulated. Overall, comparison of PCOS cases with controls showed downregulation of extracellular matrix 
protein 1 (ECM1); catenin (cadherin-associated protein), alpha 1 (CTNNA1); integrin, alpha 5 (ITGA5); laminin, alpha 
3 (LAMA3); laminin, beta 1 (LAMB1); fibronectin 1 (FN1); and integrin, alpha 7 (ITGA7).  In the IS group, there was 
upregulation of ADAM metallopeptidase with thrombospondin type 1 motif, 8 (ADAMTS8) and neural cell adhesion 
molecule 1 (NCAM1) compared with the controls (P<0.05).                 
Conclusion: Downregulation of ECM and cell adhesion molecules seem to be related to PCOS. Gene expression 
profile alterations in cumulus cells from both the IS and IR groups of PCOS patients seems to be involved in the 
composition and regulation of ECM during the ovulation process. This study highlights the association of ECM gene 
alteration as a viewpoint for additional understanding of the etiology of PCOS.          
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Introduction

Polycystic ovary syndrome (PCOS) is a frequent 
endocrinopathic condition among reproductive aged 
women with a prevalence of 8-12% (1). According to the 
Rotterdam ESHRE/ASRM Consensus, diagnostic criteria 
for PCOS include oligo/anovulation, hyperandrogenism, 
and polycystic ovaries (detected by sonography) (2). 
Although the etiology of PCOS is uncertain, there is a 
confirmed familial and genetic basis for PCOS (3). The 
consequential complications of PCOS are follicular 
maturation arrest and insulin resistance (4, 5). Insulin 
resistance is defined as the impaired insulin ability to 

maintain glucose homeostasis, which leads to an increase 
in insulin levels in the bloodstream (6). The role of insulin 
resistance in the pathogenesis of PCOS is uncertain, but 
studies lend support to the hypothesis that insulin plays 
an important role in regulating the response of human 
granulosa cells to gonadotropins (7). Hyperinsulinemia 
is a condition that damages oocyte developmental 
competence, resulting in reduced rates of fertilization, 
embryonic development, and implantation in obese PCOS 
patients (8).

Folliculogenesis needs communication between the 
oocyte and surrounding somatic cells (9, 10). These 
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somatic cells comprise two populations, specialized layers 
of flattened granulosa cells which line the antrum of follicles 
and a specified type of granulosa cells called cumulus cells 
which surround the oocyte in the preovulatory follicle. 
Cumulus cells undergo “cumulus expansion”, a process that 
requires these cells to form new ECM that binds the oocyte 
and cumulus cells together (5, 11). This process enables the 
oocyte to resume maturation. A surge of luteinizing hormone 
(LH) is necessary to initiate ovulation (5). 

The extracellular matrix (ECM) of the cumulus oocyte 
complex (COC) is  composed of several molecules 
with varying roles such as differentiation, division, cell 
death, and migration. Interestingly, all of these roles 
are associated with follicle development. Appropriate 
formation of the expanded cumulus matrix is critical for 
ovulation. Successful follicular rupture and fertilization 
is sensitive to perturbations in the composition and 
functional capacity of the cumulus matrix (11). The 
backbone of the expanded cumulus matrix is hyaluronic 
acid (HA), a large disaccharide chain common to numerous 
ECM. Synthesis of HA requires glucose. Glucose uptake 
and glycolytic activity in cumulus cells are markedly 
stimulated by the LH surge in rodents, cows, and humans. 
During oocyte maturation, there is an increase in glucose 
flux in the COC. The basement membrane that surrounds 
the granulosa layers of all follicles is composed of type I 
collagen, fibronectin, and laminin (12). 

Proteoglycans such as versican (VCAN) are produced 
primarily by mural granulosa cells and rapidly incorporate 
into developing cumulus matrix. This suggests that VCAN 
binds to HA through its link module and is another organizer 
of the COC matrix structure. Deregulation of ECM matrix 
compartment genes during follicular development is 
important in the pathogenesis of PCOS (13). 

Follicular growth and rupture, as well as early luteal 
formation, partially occur through the action of matrix 
metalloproteinase (MMPs) and their inhibitors. The 
MMP system is involved in connective tissue remodeling 
processes throughout the body. This system comprises 
both proteolytic enzymes and their associated inhibitors. 
MMPs have a potent ability to bind and cleave gelatin and 
act to degrade major constituents of basement membranes 
that include type IV collagen, laminin, and fibronectin. In 
the ovary, MMPs and their inhibitors are hypothesized to 
play a critical role in ECM remodeling associated with 
ovulation, luteal formation, and regression (14). 

Follicular development and ovulation are dynamic 
processes that need broad tissue remodeling. Previous 
studies have reported the abnormal turnover of ovarian 
ECM components that lead to development of PCOS (15). 

In the present study, we assessed the gene expression 
profiles for ECM and adhesion molecules in the cumulus 
cells of infertile PCOS patients based on their insulin 
sensitivity following ovarian stimulation with a gonadotropin-
releasing hormone (GnRH) antagonist protocol. We reported 
downregulation of ECM and cell adhesion molecules as a 
probable etiology of PCOS infertility.

Materials and Methods
Patient selection

The Ethics Committee at Royan Institute approved 
this prospective case-control study (No. EC/93/1078). 
All participants gave informed consent prior to inclusion 
in the study. We ensured the confidentiality of patients’ 
identities this research by data anonymization during 
analysis. This research did not incur any additional costs 
to the patients, nor did it affect their treatment in any 
way. Study participants comprised 23 women, less than 
36 years of age, who underwent intracytoplasmic sperm 
injection (ICSI) and were not affected by thyroid disorders, 
diabetes, or ovarian hyperstimulation syndrome (OHSS). 
We allocated 15 PCOS patients previously diagnosed by 
the Rotterdam 2004 criteria whose partners had normal 
spermogram results (2) to one of two groups, insulin 
resistant (IR) or insulin sensitive (IS), based on fasting 
insulin (FI, cutoff: 12 mU/L) levels and the homeostasis 
model assessment of insulin resistance (HOMA-IR, 
cutoff: 2.57). We calculated HOMA-IR as follows: 
[(fasting serum insulin [mU/L]×fasting serum glucose 
[mmol/L])/22.5] (16). 

The IR group consisted of 7 PCOS patients (FI≥12 
mU/L, HOMA-IR:≥2.57). The IS group consisted of 8 
patients (FI:<12 mU/L; HOMA-IR<2.57). The control 
group consisted of 8 healthy, normal ovulatory fertile 
women with male infertility history. 

Stimulation protocol
Controlled ovarian stimulation (COS) was initiated from 

the third day of the cycle. Patients received regular, daily 
subcutaneous (SC) injections of recombinant follicle-
stimulating hormone (rFSH, Gonal-F, Serono, Switzerland). 
We adjusted the starting dose of rFSH according to each patient’s 
response as measured by transvaginal ultrasonography, antral 
follicle count (AFC), estradiol (E2) level, and anti-Müllerian 
hormone (AMH). Once the ovarian follicles reached 12 
mm in diameter, patients received SC injections of a GnRH 
antagonist, cetrorelix (Cetrotide®, Merck Serono, Germany). 
The protocol consisted of daily Cetrotide® SC injections 
until the criteria for human chorionic gonadotropin (hCG) 
administration was met. When more than 3 follicles reached 
diameters of at least 18 mm and E2 levels of 1000-4000 pg/
mL, each patient received an intramuscular (IM) injection of 
10000 IU of hCG (Pregnyl®, Organon, Netherlands) or SC 
injection of 250 μg Ovidrel (Merck Serono, Germany).

Isolation of cumulus cells
Following oocyte pick-up, the COCs were washed 3-5 

times in G-IVFTM medium (Vitrolife, Sweden) to remove 
blood and excess cells. After washing, the COCs were 
placed in a CO2 incubator at 37˚C for 2 hours in G-IVFTM 
(Vitrolife, Sweden). Oocyte denudation was performed with 
80 IU of hyaluronidase, (Sigma, USA) (17). Immediately 
after oocyte denudation, cumulus cells were washed with 
phosphate-buffered saline (PBS) and we added RNA protect, 
after which the cells were snap frozen in liquid nitrogen and 
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stored at -80˚C until RNA extraction. Cumulus cells were 
collected from metaphase II oocytes (MII).  MΙΙ oocytes 
were fertilized by ICSI within 10 minutes after denudation, 
and then incubated until transfer. The regular fertilization 
rate was controlled (16-20 hours after ICSI). Based on our 
laboratory standards, embryos were graded at the pronuclear 
(16-20 hours) and cleavage (48-72 hours) stages (18, 19). 
We selected 1-2 embryos for transfer based on the embryos’ 
grades, patient age, and previous assisted reproductive 
technology (ART) cycles.  

Purification and preparation of RNA
Total RNA was extracted by a Pico Pure RNA Isolation 

Kit (Arcturus, USA) and treated with RNase-free DNase 
I according to the manufacturer’s instructions. RNA 
concentration and purity were quantified using a Nanodrop 
2000 Spectrophotometer (Thermo, USA).

Quantitative real-time PCR array 
We preamplified 50 ng of total RNA using the RT2 

PreAMP cDNA Synthesis Kit (Qiagene, USA) in a 12-cycle 
multiplex PCR for all genes of interest. We examined the 
same set of genes in the 3 study groups. Quantitative real-
time PCR array (qPCR-array) was performed using the 
Human Extracellular Matrix & Adhesion Molecules RT2 
Profiler PCR Array (Qiagene, USA). These SYBR Green-
based arrays were designed as one sample/one 96-well plate 
using primers for a preset list of genes that included 84 ECM 
and adhesion molecule genes in addition to 12 control wells. 
Only experiments that passed the PCR array run quality 
control were included in the data analyses. Briefly, cDNA 
volumes were adjusted to 2.5 ml with RT2 Real-Time SYBR 
Green/ROX PCR Master Mix (Qiagene, USA). A total of 
25 µL cDNA mix was added to all wells. Real-time PCR 
was performed in a StepOnePlus™ instrument (Applied 
Biosystems, USA). 

Bioinformatics and statistical analysis 
Relative gene expressions were calculated by the 2-∆∆Ct 

method. Ct indicated the cycle threshold, the fractional cycle 
number where the fluorescent signal reached the detection 
threshold. The normalized ∆Ct value of each sample was 
calculated using reference genes with a Ct variation less than 
one among all experiments. Reference genes included beta-2 
microglobulin (B2M); ribosomal protein, large, P0 (RPLP0); 
hypoxanthine phosphoribosyltransferase 1 (HPRT1); actin, 
beta (ACTB); and glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH). The statistical significance of differentially 
expressed genes (DEG) was measured by the two-tailed t test. 
Two-sided P<0.05 were considered significant. 

Visualization of the biological function network of DEG 
was performed using a search tool for the retrieval of 
interacting genes/proteins (STRING; http://string-db.org/), 
an online functional protein interaction network. 

Web-based RT2 Profiler PCR Array data analysis software 
was used for gene expression. Also, clinical parameters 
were analyzed generalized linear model (GLM) procedure. 

Multiple comparisons were implemented using LSMEANS 
statement. All analyses were conducted in SAS version 9.4 
(SAS Institute Inc., Carry, NC, USA). Differences at P≤0.05 
and 0.05<P<0.10 were considered statistically significant and 
tended to be statistically significant, respectively.

Results
Clinical parameters including age, LH/FSH ratio, body 

mass index (BMI), and concentration of fasting blood glucose 
did not significantly differ among the three groups (P>0.05). 
Duration of infertility tended to be longer in IR patients as 
compared with the control group (P=0.097); however, it 
was not different considering other comparisons (P>0.05). 
LH concentration tended to be higher in IS patients than the 
control group (P=0.079), but it did not differ between other 
groups (P>0.05).

The number of follicles and oocytes collected per patient did 
not significantly differ between groups (P>0.05). Number of 
MII oocytes was greater in the control group compared with 
IS (P=0.015) and IR (P=0.048) groups. However, number 
of MII oocytes was not different between IS and IR groups 
(P>0.05). There was no difference in the fertilization rate of 
oocytes among the three groups. Both the IR and IS groups 
had significantly lower numbers of good quality cleavage 
stage embryos compared to the control group (P<0.01). The 
number of transferred embryos did not differ between groups  
(P>0.05, Tables 1, 2). 

We analyzed the expression profiles of 84 genes related 
to the ECM protein and adhesion molecule pathway. Of the 
five reference genes, B2M, RPLP0 and HPRT1, with a Ct 
variation less than one among all experiments, were chosen 
for normalization. Table 3 shows the fold differences for 
DEG among the groups (P<0.05). In the IS group, ADAM 
metallopeptidase with thrombospondin type 1 motif, 8 
(ADAMTS8) and neural cell adhesion molecule 1 (NCAM1) 
upregulated whereas integrin, alpha 2 (ITGA2); collagen, 
type I, alpha 1 (COL1A1); fibronectin 1 (FN1); integrin, 
alpha 7 (ITGA7); and matrix metallopeptidase 2 (MMP2) 
downregulated compared to the control group. Extracellular 
matrix protein 1 (ECM1) and integrin, alpha 5 (ITGA5) 
downregulated in the IR group compared to the control 
group (P=0.030 and P=0.052, respectively). A comparison 
of the IR group with the IS group showed downregulation 
of catenin (cadherin-associated protein), beta 1(CTNNB1); 
catenin (cadherin-associated protein), delta 1 (CTNND1); 
intercellular adhesion molecule 1 (ICAM1); Kallmann 
syndrome 1 sequence (KAL1); laminin, alpha 1 (LAMA1); 
laminin, alpha 2 (LAMA2); VCAN, and vitronectin (VTN) 
along with upregulation of ITGA2. Comparison between 
all PCOS patients to controls showed downregulation 
of ECM1; catenin (cadherin-associated protein), alpha 1 
(CTNNA1); ITGA5; laminin, alpha 3 (LAMA3); laminin, beta 
1 (LAMB1); FN1; and ITGA7. Figure 1 shows the network 
of the respective proteins of DEG. Although this figure 
does not show a mechanism behind our observation, it 
shows interactions among these genes. Hence, they are 
not isolated, independent genes; rather, their produced 
proteins might cooperate as a cluster.

http://string-db.org/
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=1495
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=3678
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=3909
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=3912
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Table 1: Clinical parameters for control and PCOS patients

P valueIS groupIR groupControl groupPatients (n)

n=8n=7n=8

NS26.25 ± 1.1327.75 ± 1.3730.29 ± 2.15Age (Y)

NS5.31 ± 0.966.75 ± 1.253.14 ± 1.23Duration of infertility (Y)

NS27.18 ± 1.9827.61 ± 1.0423.60 ± 1.47BMI (kg/m2)

NS6.51 ± 0.757.55 ± 1.565.37 ± 0.59FSH (U/L)

NS8.12 ± 1.246.19 ± 0.75.10 ± 0.59LH (U/L)

NS1.27 ± 0.171.07 ± 0.261.14 ± 0.32LH/FSH

NS93.38 ± 3.5691.75 ± 1.4293.14 ± 2.87Fasting glucose (mg/dl)

Variables are presented as Mean ± SE. P values determined by  analyzed generalized linear model (GLM) procedure with significance level of P<0.05.
PCOS; Polycystic ovary syndrome, BMI; Body mass index, FSH; Follicle-stimulating hormone, LH; Luteinizing hormone, IS; Insulin sensitive, IR; Insulin 
resistant, and NS; Not significant.

 

 Table 2: Cycle characteristics and IVF/ICSI outcomes in controls compared to PCOS patients

P valueIS groupIR groupControl groupVariables

n=8n=7n=8

NS14.75 ± 2.3018.25 ± 1.6714.14 ± 1.55Number of follicles

NS12.38 ± 1.9213.00 ± 1.6816.43 ± 1.45Number of oocytes retrieved

a, b=0.0489.88 ± 1.22c10.88 ± 1.27b15.43 ± 1.23aNumber of MII oocytes

a, c=0.015

NS68 (54/79)69 (54/78)72 (78/108)Regular fertilization rate, % (# of 
2PN/# MII oocytes)

NS8.00 ± 1.187.25 ± 1.2510.14 ± 0.86Total embryos

a, b=0.0161.62 ± 0.60c2.00 ± 0.78b5.14 ± 0.83aNumber of good quality embryos

a, c=0.005

NS1.13 ± 0.441.75 ± 0.531.00 ± 0.49Number of ET

Variables are presented as Mean ± SE. P values determined with significance level of P<0.05.
PCOS; Polycystic ovary syndrome, IVF; In vitro fertilization, ICSI; Intracytoplasmic sperm injection, IS; Insulin sensitive, IR; Insulin resistant, MII; Metaphase 
II oocytes, NS; Not significant, 2PN; Two pronuclei, ET; Embryos transferred, a, b; Statistically significant differences between IR patients vs. controls, and a, 

c; Statistically significant differences between IS patients vs. controls.
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Table 3: Differentially expressed gene fold differences among groups

Gene symbols IS vs. control IR vs. control IR vs. IS PCOS vs. control P value

ADAMTS8 3.32a 0.63 2.26 2.77 a=0.031∗

COL1A1 0.43a 2.21 0.94 0.62 a=0.020∗

CTNNA1 0.60 0.98 0.58 0.59d d=0.022∗

CTNNB1 3.78 1.18 0.31c 2.19 c=0.013∗

CTNND1 1.78 0.73 0.41c 1.18 c=0.028∗

ECM1 0.66a 0.49b 0.73 0.57d a=0.052†

b=0.030∗

d=0.011∗

FN1 0.51a 0.65 1.27 0.57d a=0.004∗∗

d=0.012*

ICAM1 1.94 0.78 0.4c 1.27 c=0.011∗

ITGA2 0.54a 0.88 1.64c 0.68 a=0.020∗

c=0.042∗

ITGA5 0.63 0.58b 0.92 0.61d b=0.052 †

d=0.033∗

ITGA7 0.45a 0.51 1.14 0.47d a=0.046∗

d=0.017∗

KAL1 2.09 1.21 0.58c 1.62 c=0.002∗∗

LAMA1 3.96 1.13 0.28c 2.20 c=0.028∗

LAMA2 2.19 0.86 0.39c 1.42 c=0.018∗

LAMA3 0.68 0.52b 0.76 0.6d b=0.059†

d=0.022∗

LAMB1 0.67 0.60 0.90 0.64d d=0.020∗

MMP2 0.40a 1.69 4.21 0.79 a=0.037∗

NCAM1 2.72a 1.64 0.60 2.15 a=0.049∗

THBS3 0.48a 0.77 1.60 0.60 a=0.039∗

VCAN 3.50 1.01 0.29c 1.96 c=0.030∗

VTN 2.29 1.26 0.55c 1.73 c=0.037∗

The statistical significance of differentially expressed genes (DEG) was measured by the two-tailed t test.
IS; Insulin sensitive, IR; Insulin resistant, PCOS; Polycystic ovary syndrome, *; P<0.05, **; P<0.01, †; statistically marginal difference 0.05<P<0.06. Last 
column represents P value of comparison between groups, a; IS vs. control, b; IR vs. control, c; IR vs. IS, and d; PCOS vs. control.

http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=1495
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=3678
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=3909
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=3912
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Fig.1: Protein-protein interaction network of respective proteins to differentially expressed genes (DEG) in cumulus cells from among the groups. 
Thicknesses of interactions show confidence levels according to the STRING database. 

Discussion
In terms of in vitro fertilization (IVF)/ICSI outcome, 

the present study showed that IR might be associated 
with low oocyte maturity in infertile PCOS women, but 
this did not affect the regular fertilization rate of oocytes 
between the 3 groups. According to our data, both the IR 
and IS groups had significantly lower numbers of good 
quality embryos compared to the control group. 

The expression pattern of cumulus cells of infertile PCOS 
patients in an IVF program was studied and compared 
based on their insulin sensitivity. Differences arise in 
the expression of genes involved in the composition and 
regulation of COC ECM. We highlighted the association 
of ECM and cell adhesion molecule gene alterations in 
order to understand the etiology of PCOS as a genetically 
complex disorder. The importance of cumulus cells in 
the control of oocyte metabolism has been reported (20). 
Malfunction of these cells might have a role in PCOS 
pathogenesis (21). 

Since the report on insulin hypersecretion by Burghen 
et al. (22), this disorder has been reported consistently 
in women with PCOS. There are molecular mechanisms 
that can elucidate insulin resistance in PCOS patients. 
It seems that a major contributor to insulin resistance 
in PCOS patients is a reduction in insulin sensitivity 
secondary to a defect in insulin signaling (23). Recent in 
vitro studies have revealed differential insulin signaling in 
human luteinized granulosa cells of PCOS patients with 

and without insulin resistance (24). According to recent 
studies, comparison of PCOS patients with controls has 
shown differential expression of ECM related genes. The 
studied DEGs associated with O- and N-glycosylation, 
which is important in ECM components gathering; these 
mechanisms highlight the key role of ECM components 
during folliculogenesis (25). Differential expression of 
ECM and cell adhesion molecules genes were identified in 
IR versus IS PCOS patients. It seemed that dysregulation 
of ECM components could associate with defective oocyte 
maturation, as well as a decrease in embryo quality, even 
after IVF treatment.

Among DEG detected in this study, an association with 
some genes had previously been reported with PCOS, 
such as ADAMTS8; integrin, beta 2 (ITGB2); CTNNB1; 
and cadherin 1 (CDH1) (26, 27). 

In the present study, we have observed downregulation 
of CTNNB1 and CTNND1 in IR PCOS patients 
compared to IS PCOS patients. CTNNB1, is a key 
effector of the canonical Wnt/frizzled (FZD) pathway. 
CTNNB1 not only mediates cell-cell adhesion, but 
also acts as a transcription factor. In the latter context, 
CTNNB1 protein is phosphorylated and subsequently 
degraded by a large multi-protein complex that 
includes glycogen synthase kinase 3 beta (GSK3ß) 
(28). Microarray analysis of PCOS ovaries compared 
to normal ovaries have shown downregulation of genes 
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that encode for components of Wnt signaling (27). 
In animal studies, disruption of CTNNB1 expression 
in granulosa cells is predictive of major changes in 
granulosa cell performance (29).	

We observed downregulation of VCAN in IR versus 
IS patients, which agreed with a recent study that has 
highlighted a possible role for VCAN in ovulatory 
dysfunction of PCOS patients (30). VCAN is one of the 
markers of oocyte developmental competence. According 
to Gebhardt et al. (31), cumulus cells separated from 
oocytes that led to live birth had significantly elevated 
VCAN expression.

Expression of the KAL1 gene decreased significantly 
in IR versus IS patients. A recent study highlighted the 
role of KAL1 as one of the ECM components in oocyte 
maturation (32). In our study, downregulation of KAL1 
in IR versus IS patients interfered with normal oocyte 
maturation. 

We observed downregulation of MMP2 in the IS group 
compared to the control group. Curry and Osteen (33) 
proposed that the MMP system might regulate normal 
follicular maturation and atresia in order to attain the 
appropriate number of ovulatory follicles. Recent studies 
showed that MMP2 highly expressed during ovulation 
(34); therefore, downregulation of this gene in PCOS 
patients could affect normal ovulation.

Insulin resistance can lead to structural alterations in the 
basal lamina of the insulin-responsive organs. Under the 
influence of insulin resistance, ovulation mechanisms in 
the ovaries are impaired and hyperinsulinemia is present 
prior to anovulation (6, 24). Cumulus cells organize 
the ECM structure prior to ovulation and provide a 
microenvironment essential for normal fertilization. 
In this regard, ECM components play a critical role in 
reproductive performance (15). An abnormal turnover of 
ovarian ECM components has been considered in PCOS 
patients in a previous report (35). Of the altered genes, 
downregulation of COL1A1 and FN1 in IS patients in 
addition to LAMA1 and LAMA2 in IR versus IS patients 
was not previously reported. To the best of our knowledge, 
the current study was the first real time based simultaneous 
analysis of more than 80 ECM and cell adhesion genes as 
a more reliable technique compared to microarrays.

ECM1 is a secretory glycoprotein which regulates 
cell proliferation and invasion by an increase in glucose 
transporter (GLUT) expression (36). In this study, we 
found that the ECM1 gene downregulated in the IR group. 
Since glucose is necessary for oocyte maturation, ECM1 
downregulation could reflect the role of IR in antral 
follicle arrest in PCOS patients.

Integrin (ITG) families are heterodimeric integral 
membrane proteins composed of an alpha subunit and a 
beta subunit that function in cell surface adhesion and 
signaling (37). According to the results by Liu et al. (38), 
the ITG gene family downregulated in PCOS cumulus 

cells compared with a control group. Due to the importance 
of ITG genes in cell adhesion, they suggested that the 
communication of oocyte and its neighboring cumulus 
cells in PCOS patients might be disrupted. According 
to our data, ITGA5 and ITGA7 downregulated in PCOS 
patients compared to the control group. ITGA7 functions 
as receptor for the basement membrane protein laminin-1. 
ITGA5 is known as a fibronectin receptor.  Recent studies 
have shown that alterations of some genes are associated 
with oocyte nuclear maturation in PCOS (39). Cell-matrix 
adhesion molecules such as ITG family are important in 
this process. 

Conclusion
Downregulation of ECM and cell adhesion molecule 

genes in cumulus cells of infertile PCOS women with and 
without insulin resistance can have an association with 
decreased numbers of mature oocytes and good quality 
embryos.
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