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Abstract
Objective: Despite the huge efforts, chronic kidney disease (CKD) remains as an un-
solved problem in medicine. Many studies have shown a central role for transforming 
growth factor beta-1 (TGFβ-1) and its downstream signaling cascades in the pathogen-
esis of CKD. In this study, we have reanalyzed a microarray dataset to recognize critical 
signaling pathways controlled by TGFβ-1.

Materials and Methods: This study is a bioinformatics reanalysis for a microarray data. The 
GSE23338 dataset was downloaded from the gene expression omnibus (GEO) database 
which assesses the mRNA expression profile of TGFβ-1 treated human kidney cells after 24 
and 48 hours incubation. The protein interaction networks for differentially expressed (DE) 
genes in both time points were constructed and enriched. In addition, by network topology 
analysis, genes with high centrality were identified and then pathway enrichment analysis 
was performed with either the total network genes or with the central nodes.       
Results: We found 110 and 170 genes differentially expressed in the time points 24 and 48 
hours, respectively. As the genes in each time point had few interactions, the networks were 
enriched by adding previously known genes interacting with the differentially expressed ones. 
In terms of degree, betweenness, and closeness centrality parameters 62 and 60 nodes were 
considered to be central in the enriched networks of 24 hours and 48 hours treatment, respec-
tively. Pathway enrichment analysis with the central nodes was more informative than those 
with all network nodes or even initial DE genes, revealing key signaling pathways.                      
Conclusion: We introduced a method for the analysis of microarray data that integrates the 
expression pattern of genes with their topological properties in protein interaction networks. 
This holistic novel approach allows extracting knowledge from raw bulk omics data.            
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Introduction

Chronic kidney disease (CKD) is a public health 
problem and a leading cause of death. Despite us-
ing current therapies to slow progression of CKD, 
respective patients are still reaching the end stage 
renal disease (ESRD) at alarming proportions (1). 
The histological feature of this debilitating disor-

der is excessive deposition of extra-cellular matrix 
(ECM) defined as renal fibrosis. Recent studies 
declared that transforming growth factor beta-1 
(TGFβ-1) is the major driver of fibrosis in kidney, 
stimulating a variety of signaling pathways related 
to deposition of ECM components (2). In spite of 
enormous researches on the role of TGFβ-1 and 
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downstream elements in the progression of 
CKD (3, 4), few studies have employed holistic 
and computational methods for investigation of 
kidney disorders. Among these studies, there is 
an elegant report presented by Jin et al. (5) who 
employed gene regulatory network concepts to 
analyze high-throughput gene expression data. 
They could predict and experimentally validate 
HIPK2 as a potential drug target in HIV-associ-
ated nephropathy.

In this study, we propose a holistic approach to 
investigate the molecular interactions and sign-
aling pathways in response to TGFβ-1 stimula-
tion in human kidney cells. A microarray data-
set has been generated by Walsh et al. (6) that 
examines the expression profile of human tu-
bular epithelial cells before and after treatment 
with TGFβ-1 for 24 and 48 hours. However, 
they only focused on the few top differentially 
expressed (DE) genes including GREM1, JAG1 
and HES1. They identified Notch signaling as 
a critical pathway in diabetic nephropathy. In 
the current study, we introduced a new method 
for the analysis of the same microarray dataset 
that integrated the expression pattern of genes 
with their topological location in the gene in-
teraction network. Using this strategy, we could 
infer more informative signaling pathways re-
lated to TGFβ-1 stimulation. This approach 
could also be employed for other large data to 
improve our understanding of biological pro-
cesses by extracting remarkable concepts from 
bulk omics data.

Materials and Methods
Microarray data

This study is a bioinformatics analysis of 
GSE23338 dataset, originally generated by 
Walsh et al. (6). mRNA expression profile was 
downloaded from the Gene Expression Omnibus 
(GEO) database (7). In this microarray experi-
ment, transcriptional response of human proxi-
mal tubule epithelial cells (HK-2) to TGFβ-1 
stimulation after 24 and 48 hours was assessed. 
Using GEO2R tool of GEO, the TGFβ-1 treated 
cells (24 or 48 hours) were compared to un-
treated HK-2 cells. Benjamini-Hochberg false 
discovery rate method was applied for P value 

adjustment. Genes with adjusted P≤0.05 were 
considered as differentially expressed.

Protein-protein interaction network

Using CluePedia plugin (8) of the Cytoscape 
software version 3.1.0 (9), a protein-protein inter-
action (PPI) network was constructed for the DE 
genes in time point of 24 hours or 48 hours. Topol-
ogy of networks was analyzed by the NetworkAn-
alyzer tool of Cytoscape software.

Pathway enrichment analysis

Pathway enrichment analysis for DE genes 
was carried out using ClueGO plugin (10) of 
Cytoscape. In this analysis, KEGG and Reac-
tome databases were chosen for retrieving data 
and network specificity was adjusted to medi-
um. Bonferroni step down was applied for  P 
value adjustment and pathways with adjusted 
P≤0.05 were chosen.

Results
In this study, we reanalyzed the GSE23338 

microarray dataset assessing mRNA expression 
profile of HK-2 cells after 24 and 48 hours of 
treatment with TGFβ-1. Analysis by GEO2R 
revealed that 110 genes after 24 hours and 
170 genes after 48 hours were differentially 
expressed with adjusted P≤0.05 (Table 1). To 
investigate the interaction between variably ex-
pressed genes, a network was constructed for 
each time point. Although different kind of in-
teractions (activation, post-translational modi-
fication, expression and binding) were allowed 
to be shown, unexpectedly, few interactions 
were appeared in both networks (Fig.1A, B). To 
infer pathways related to the DE genes and un-
derstand the down-stream processes controlled 
by TGFβ-1, pathway enrichment analysis was 
performed, showing only 12 pathways for 24 
hours (Fig.1C) and 10 pathways for 48 hours 
treatments (Fig.1D), with few connections be-
tween the signaling pathways.

The scarcity of interactions in PPI and path-
way networks was not unexpected, as they were 
derived from mRNA microarray data which 
can only detect genes with altered mRNA lev-
el, thus regulated genes at other levels were 
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missed. Hence, to predict other role players, we 
enriched both PPI networks by adding one in-
teracting node for each gene. This resulted in 
expansion from 110 to 199 nodes for 24 hours 
(Fig.2A) and from 170 to 301 nodes for 48 
hours treatment (Fig.2B). PPI networks were 
reconstructed with the same parameters applied 
initially. To determine the most central genes 
in these enriched networks, their topology was 
assessed by graph theory measures such as de-
gree, betweenness centrality, and closeness cen-
trality. In each network, the genes were sorted 
based on each of these features. Then, the top 
20% genes in 24 hours treatment and 15% 
genes with higher rank in 48 hours were cho-
sen. Because of overlapping nodes between the 
above three centrality parameters, a total of 62 
genes in time point of 24 hours (Table 2) and 60 
genes in time point of 48 hours (Table 3) were 
finally selected. Again, pathway enrichment 

analysis was performed with either the central 
genes or the total genes in these two enriched 
networks. The central genes in time points 24 
and 48 hours networks were related to 29 and 
49 pathways, respectively (Fig.3). These path-
ways were strongly related to CKD and formed 
a deeply connected network in both time points. 
Interestingly, pathway enrichment analysis with 
the total enriched networks genes, only deter-
mined 16 and 18 pathways for time points of 
24 and 48 hours, respectively. These pathways 
were less inter-connected compared to those de-
rived from the central genes (Fig.4).

Pathway enrichment analysis with the central 
genes predicted Notch, TNF, P53, Activin and 
TGFβ signaling as well as platelet-related path-
ways, affected after TGFβ-1 treatment in both 24 
and 48 hours. However, Hippo, PDGF and FGFR 
signaling pathways were enriched only in the sec-
ond time point.

Table 1: Differentially expressed genes in time 24 hours and 48 hours with adjusted P≤0.05. The genes are sorted by log2 of fold change (LogFC)

Time 24         Time 48

Genes adj.P.Val logFC Genes adj.P.Val logFC

GDF15 0.012817 -4.03492 GDF15 0.004294 -3.77276

CRYM 0.046546 -3.35307 CRYM 0.020195 -3.74094

SCNN1A 0.012817 -3.19552 CD9 0.000557 -3.3273

CD9 0.003455 -2.96886 SCNN1A 0.006484 -2.86473

RBM47 0.012817 -2.96538 RBM47 0.010066 -2.73215

MAL 0.012817 -2.6579 MAL 0.007941 -2.72193

HLF 0.033274 -2.44538 AREG 0.014332 -2.71598

DEPTOR 0.011983 -2.38064 HLF 0.021497 -2.52256

IMPA2 0.002857 -2.22728 PLA1A 0.007423 -2.46499

RTEL1 0.003588 -2.11992 PDZK1IP1 0.026161 -2.45799

MEGF9 0.03429 -2.04315 DUSP5 0.005251 -2.37922

GSE1 0.011894 -2.04015 ACSL1 0.003583 -2.36964

ELOVL6 0.004534 -2.02884 DEPTOR 0.014818 -2.23285
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Table 1: Continued

Time 24         Time 48

Genes adj.P.Val logFC Genes adj.P.Val logFC

BIRC3 0.012817 -1.98537 DEFB1 0.001178 -2.1258

SLC17A3 0.006063 -1.96502 IMPA2 0.001964 -2.11942

SULT1C2 0.045879 -1.93073 HLA-DMB 0.036113 -2.11004

DUSP6 0.018789 -1.93001 FXYD2 0.002471 -2.09686

CEBPD 0.015951 -1.89181 RTEL1 0.003148 -1.99502

DEFB1 0.003455 -1.87388 CLDN1 0.002102 -1.9428

ACSL1 0.003455 -1.84878 BIRC3 0.008587 -1.93307

PLA1A 0.030906 -1.79724 SULT1C2 0.028474 -1.89456

DUSP5 0.011894 -1.78577 FAS 0.040775 -1.84699

CA12 0.011983 -1.70822 CEBPD 0.014469 -1.81201

CLDN1 0.006732 -1.69617 SLC17A3 0.010066 -1.78837

PDZK1IP1 0.031449 -1.66723 LY6E 0.003332 -1.70064

ADAMTS3 0.009793 -1.64873 SERPINA1 0.021497 -1.68148

CDKN2AIP 0.047829 -1.62696 SLCO4A1 0.03808 -1.67053

GULP1 0.049153 -1.55674 SOD2 0.003686 -1.65771

ACVR1B 0.019538 -1.47953 TSPAN1 0.011747 -1.65484

ID2 0.018571 -1.45204 PLIN2 0.026161 -1.62099

EPAS1 0.049153 -1.42294 MEGF9 0.024224 -1.61932

SOD2 0.016073 -1.41158 RAB20 0.026161 -1.59433

ANXA4 0.047613 -1.37096 CLU 0.002471 -1.54936

RAB20 0.015265 -1.34593 SLC4A4 0.03487 -1.50061
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Table 1: Continued

Time 24         Time 48

Genes adj.P.Val logFC Genes adj.P.Val logFC

MMD 0.030004 -1.33753 GULP1 0.047026 -1.46306

CLU 0.01997 -1.32415 EPAS1 0.038561 -1.42677

BDNF 0.018571 -1.26903 ACVR1B 0.013621 -1.3911

EPCAM 0.015265 -1.26628 GPRC5C 0.026161 -1.34555

NR2F2 0.044918 -1.26334 GSE1 0.041643 -1.32532

TMEM159 0.047829 -1.25784 LRRC61 0.020785 -1.32277

FAS 0.019538 -1.23999 ANXA4 0.038789 -1.31199

LY6E 0.014942 -1.20673 CDKN2AIP 0.03949 -1.30584

LRRC61 0.033972 -1.17462 MMD 0.021485 -1.29784

PPP2R5A 0.023781 -1.16917 PPP2R5A 0.019989 -1.25554

SERPINA1 0.039821 -1.09323 NR2F2 0.012081 -1.22902

IL24 0.011983 -1.09102 GLRX 0.035692 -1.22902

HGD 0.019538 -1.08015 SERPINA6 0.00653 -1.22661

ELF3 0.026977 -1.07437 EMP1 0.030041 -1.22491

GCH1 0.032261 -1.0672 MAPKAPK3 0.037211 -1.20559

ALDH5A1 0.030004 -1.05748 IFI30 0.039032 -1.1775

FXYD2 0.020961 -1.02587 EPCAM 0.014332 -1.17347

TRIM38 0.043165 -0.92721 SYS1-DBNDD2 0.039499 -1.16256

NHLRC2 0.018571 -0.92091 ADAMTS3 0.014586 -1.12871

TBL1X 0.040887 -0.88595 SHMT1 0.036579 -1.12397

LAD1 0.04193 -0.87726 GGT2 0.007492 -1.10696

GLRX 0.035216 -0.87251 LAD1 0.014332 -1.09515

TPM1 0.030916 0.782848 FOSL1 0.023626 -1.08872

AMIGO2 0.032261 0.803279 ELF3 0.022045 -1.078

MISP 0.030916 0.808838 ID2 0.03219 -1.07757

ACLY 0.030778 0.809032 SMAD3 0.042933 -1.05481

FN1 0.03429 0.860918 IL24 0.030041 -1.03178

LYPD1 0.046955 0.922314 SH2B2 0.020195 -1.00971

RALA 0.030004 0.95394 DUSP6 0.038561 -0.98235

EFNB2 0.030004 0.9589 ITPR3 0.021485 -0.9804

SMURF2 0.044772 1.000129 PDLIM1 0.044481 -0.96321

TFPI2 0.019538 1.042945 ALDH5A1 0.019989 -0.95377

MARCH3 0.026013 1.048251 FAM3C 0.039499 -0.93464

NREP 0.031449 1.121914 REPIN1 0.038561 -0.9095
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Table 1: Continued

Time 24         Time 48

Genes adj.P.Val logFC Genes adj.P.Val logFC

LTBP2 0.015265 1.133197 GGT1 0.036579 -0.893

PLEK2 0.025143 1.137329 ANXA1 0.03141 -0.8635

RFTN1 0.014768 1.141252 UXS1 0.037211 -0.78881

PRPS1 0.021243 1.212761 HGD 0.039499 -0.77866

ADA 0.012817 1.214286 TBL1X 0.028029 -0.76181

TNS1 0.027064 1.276677 MGLL 0.039499 -0.75719

COL1A1 0.044918 1.349036 GNPDA1 0.028029 -0.75096

LAMC2 0.015265 1.448205 PAX8 0.031546 -0.73263

CREB3L1 0.004425 1.453935 TRIM38 0.026161 -0.69388

TSPAN13 0.030916 1.468138 PROSC 0.047627 -0.68991

F3 0.049854 1.537792 TPM1 0.045542 0.614444

AKAP12 0.030004 1.541307 ARL4C 0.038561 0.67729

HES1 0.015265 1.549119 IFNGR2 0.045542 0.695846

SGK1 0.006063 1.584326 RFTN1 0.037889 0.727815

PAX6 0.014768 1.602106 ACLY 0.021485 0.74412

GREM1 0.004818 1.607941 EFNB2 0.026486 0.789092

PTHLH 0.018571 1.651867 CLTCL1 0.043748 0.805174

SLN 0.030916 1.66995 SMURF2 0.019989 0.813175

ADAM19 0.046955 1.673182 FAM208B 0.038561 0.815648

TUFT1 0.01997 1.708363 TPM4 0.036579 0.816674

PPP1R13L 0.044622 1.715701 PLEK2 0.040607 0.838742

VEGFC 0.006732 1.731189 FHOD3 0.043748 0.840283

GPR56 0.005222 1.757315 CADM1 0.014818 0.842324

LRP4 0.006732 1.839036 DLC1 0.035692 0.861077

SIK1 0.028431 1.847404 ELK3 0.037211 0.866603

C1orf106 0.014768 1.852771 AMIGO2 0.013633 0.891177

KCNK3 0.019891 1.928548 PGRMC2 0.038561 0.892116

WNT5B 0.015265 1.950651 RAB32 0.039499 0.911187

SNAI2 0.021356 1.996987 UAP1 0.02966 0.914231

GALNT10 0.022735 2.016561 SKIL 0.037889 0.927445

GADD45B 0.005222 2.081882 MAGED2 0.047466 0.933606

FSTL3 0.006871 2.18737 DYRK2 0.045542 0.941228

WNT5A 0.015265 2.199978 PALLD 0.039499 0.960395

SCG5 0.006063 2.421762 MKL1 0.012081 0.986708
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Table 1: Continued

Time 24         Time 48

Genes adj.P.Val logFC Genes adj.P.Val logFC

TGFBI 0.010068 2.585222 MARCH3 0.039989 1.008954

TP53I3 0.018571 2.591672 LTBP2 0.007423 1.013795

IL11 0.006063 2.680544 GABARAPL1 0.026161 1.018263

PMEPA1 0.002821 2.69133 TFPI2 0.045542 1.023787

TAGLN 0.015265 2.807473 NOV 0.03219 1.037359

SLCO2A1 0.002821 2.969782 NUAK1 0.010962 1.041704

INHBA 0.006732 3.742935 SLC22A4 0.021701 1.057375

JAG1 0.012993 4.819474 PDLIM7 0.036579 1.075928

SEMA3C 0.040214 1.084533

PRPS1 0.018933 1.090259

COL4A1 0.014469 1.103866

NREP 0.013884 1.110733

LYPD1 0.028474 1.112816

TCF4 0.044016 1.140686

GADD45B 0.047627 1.201497

INPP4B 0.003583 1.212552

SGK1 0.010594 1.225169

IL15 0.036579 1.22672

MAP3K4 0.028944 1.263727

TUFT1 0.037211 1.284833

SPARC 0.019989 1.288601

COL7A1 0.00653 1.297757

ADAM12 0.008731 1.356895

CREB3L1 0.003148 1.386727

PTHLH 0.013101 1.415775

ADAM19 0.026161 1.427201

IGF1R 0.047026 1.47119

ARHGEF40 0.01087 1.471459

WNT5B 0.037889 1.474394

C1orf106 0.018696 1.482021

FSTL3 0.010621 1.530293

LRP4 0.019989 1.533742

NEDD9 0.040607 1.541275

HES1 0.019989 1.573046
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Table 1: Continued

Time 24         Time 48

Genes adj.P.Val logFC Genes adj.P.Val logFC

SPOCK1 0.014586 1.577949

TSPAN13 0.014818 1.599124

SPHK1 0.024113 1.599544

THBS1 0.047872 1.633499

BCAT1 0.003332 1.666823

AKAP12 0.010066 1.677861

SLN 0.015745 1.68979

DSP 0.048348 1.726407

FN1 0.004908 1.832317

SCG5 0.000815 1.864837

GPR56 0.010962 1.900793

GALNT10 0.028612 1.917703

PAX6 0.005251 1.918114

GREM1 0.001644 1.934697

SIK1 0.012081 1.972459

TP53I3 0.035787 1.979721

VEGFC 0.010621 1.991006

EFEMP1 0.007516 2.118009

SLC26A2 0.026357 2.161277

FBN1 0.019989 2.339046

WNT5A 0.001354 2.385963

MMP13 0.024732 2.392553

TAGLN 0.010066 2.43914

SNAI2 0.002471 2.45019

PMEPA1 0.000815 2.475717

TNS1 0.012081 2.514322

TGFBI 0.002471 2.622322

IL11 0.001964 2.698275

SLCO2A1 0.001145 2.774921

SLC7A11 0.00226 3.076526

MMP1 0.021973 3.220728

SERPINE1 0.000815 3.452134

INHBA 0.000815 3.757617

JAG1 0.007516 4.928316
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Fig.1: Interaction networks of the DE genes in the microarray dataset were poor and few signaling pathways were enriched. The expres-
sion profiles of human kidney cells treated with TGFβ-1 for 24 or 48 hours were compared to untreated cells. The interaction networks 
of the differentially expressed genes in the time points of A. 24 hours and B. 48 hours have few edges. In addition, pathway enrichment 
analysis of these genes in C. 24 hours and D. 48 hours could not detect key signaling pathways. Pathways with adjusted P≤0.05 are 
shown. Color represents the gene ontology (GO) term level. 
TGFβ-1; Transforming growth factor Beta-1 and DE; Differentially expressed.

A B

C D
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Fig.2: Enrichment of the protein-protein interaction (PPI) network is an efficient method to predict the missed interacting nodes. The 
networks of A. 24 hours and B. 48 hours treatment were enriched. The selected nodes from microarray experiment are depicted with 
ellipse and enriched nodes with triangle.

A

B
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Table 2: The top 20% genes with the best rank in degree, betweenness centrality, and closeness centrality parameters in the enriched protein-
protein interaction (PPI) network of time 24 hours 

Genes Degree Genes Betweenness Genes Closeness 

TP53 35 TP53 0.338181 TP53 0.397906

FN1 16 MMP2 0.171374 MMP2 0.38191

CTNNB1 15 ALB 0.145517 NOTCH1 0.361045

MMP2 15 CTNNB1 0.125341 ALB 0.356808

ALB 14 NOTCH1 0.11946 AR 0.35023

AR 14 SERPINE1 0.100643 CTNNB1 0.347032

NOTCH1 14 AR 0.085536 SERPINE1 0.344671

SHH 13 FN1 0.075905 SMAD2 0.334802

SMAD2 11 SHH 0.069747 FN1 0.333333

SERPINE1 10 SMAD2 0.069443 ACVR1B 0.326882

COL1A1 9 PRKAR2A 0.067309 ACVR2A 0.326882

PRKAR2A 9 HSPA5 0.067049 SHH 0.325482

MAPK1 9 MAP3K5 0.049224 CD9 0.324094

TGFBI 8 PTHLH 0.047677 MAPK1 0.319328

ACVR1B 8 HRAS 0.045799 NCOR1 0.316667

IFNG 8 TGFBI 0.044403 LAMC2 0.31405

TCF4 8 HNF1B 0.040631 VTN 0.312115

ACVR2A 8 CDKN2A 0.039982 FAS 0.310838

FAS 7 NCOR1 0.039374 TCF4 0.310204

BDNF 7 PAX6 0.038418 SOD2 0.308943

CD9 6 CD9 0.038417 CTBP1 0.307692
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Table 2: Continued

Genes Degree Genes Betweenness Genes Closeness 

TP53 35 TP53 0.338181 TP53 0.397906

LAMC2 6 TCF4 0.037912 PAX6 0.306452

CTBP1 6 NR0B1 0.035918 HES1 0.306452

PAX6 6 FAS 0.035234 HSPA5 0.305835

HES1 6 MAPK1 0.031996 IFNG 0.305221

CSF2 6 NEDD4L 0.030261 KDM1A 0.305221

NR0B1 6 SLC9A3R2 0.028821 TGFBI 0.304609

HNF1B 6 IFNG 0.028734 CSF2 0.304609

LRP2 6 CSF2 0.027151 PRKAR2A 0.304

TRAF2 6 ANXA2 0.026874 DECR1 0.303393

RIPK1 6 PROC 0.026277 PPP2R1A 0.302187

NCOR1 5 KDR 0.024832 DECR1 0.303393

VTN 5 CTBP1 0.024626 PPP2R1A 0.302187

SOD2 5 APOB 0.024534 COL1A1 0.30099

HSPA5 5 TRAF2 0.024347 BDNF 0.298625

CDKN2A 5 F3 0.022625 TDGF1 0.295146

HRAS 5 BDNF 0.022597 F7 0.294574

CYP7A1 5 LRP2 0.022317 NR0B1 0.293436

KDR 5 COL2A1 0.022231 HNF1B 0.292308

ID2 5 GSTA1 0.021794 CDKN2A 0.291747

MAP3K5 5 VTN 0.021145 DUSP5 0.290631

CLU 5 ARF6 0.020175 LRP2 0.290076

NEDD4L 5 YWHAB 0.01996 ANXA2 0.289524

FST 5 ACVR1B 0.018667 F3 0.288425

MSTN 5 ACVR2A 0.018667 PTHLH 0.287335

PROC 5 RALA 0.018621 HRAS 0.286792
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Table 3: The top 15% genes with the best rank in degree, betweenness centrality, and closeness centrality parameters in the enriched protein-
protein interaction (PPI) network of time 48 hours

Genes Degree Genes Betweenness Genes Closeness 

TP53 55 TP53 0.218425 JUN 0.419966

AKT1 49 AKT1 0.180618 TP53 0.419244

EGFR 33 EGFR 0.129406 AKT1 0.415673

SMAD3 32 JUN 0.121849 EGFR 0.403974

JUN 32 SMAD3 0.091028 AR 0.403306

AR 28 ALB 0.08664 SMAD3 0.394184

FN1 25 CTNNB1 0.077284 CTNNB1 0.3904

THBS1 24 AR 0.063727 SMAD4 0.387917

CTNNB1 23 SMAD4 0.059499 SERPINE1 0.387917

SMAD2 23 FN1 0.056896 NOTCH1 0.380655

SERPINE1 20 THBS1 0.049411 THBS1 0.377709

SMAD4 20 SHH 0.0474 SMAD2 0.375963

NOTCH1 18 NOTCH1 0.044617 FN1 0.371951

ALB 16 SERPINE1 0.041249 MMP1 0.369138

SHH 16 STAT1 0.039746 MAPK1 0.365269

PLG 15 HSPA5 0.037599 STAT1 0.364179

MMP1 14 PLG 0.035914 MMP13 0.359882

TCF4 13 TRAF2 0.035805 ALB 0.357247

TGFBI 12 PRKAR2A 0.03185 IGF1R 0.357247

MAPK1 12 SMAD2 0.028572 ACVR1B 0.350575

ACVR1B 11 SLC9A3R2 0.028142 ACVR2A 0.350575

CSF2 11 HSPD1 0.027604 CSF2 0.34907
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 Table 3: Continued

Genes Degree Genes Betweenness Genes Closeness 

PRKAR2A 11 HRAS 0.025499 KDR 0.348074

STAT1 11 TCF4 0.024472 CDK1 0.348074

TRAF2 11 PALLD 0.024455 CTBP1 0.347578

IGF1R 10 TGFBI 0.024427 PPP2R1A 0.346591

CDKN2A 10 STX2 0.024388 SHH 0.343662

MAP3K5 10 CDKN2A 0.022895 SPOCK1 0.343662

ACVR2A 10 CD9 0.021863 GRB10 0.343179

ID2 9 NCOR1 0.021568 NOV 0.342216

MMP13 9 MAP3K5 0.020279 GSTA1 0.33936

SKIL 9 HNF1B 0.020242 TCF4 0.338889

SPOCK1 9 SPOCK1 0.018718 FAS 0.336088

PDLIM7 9 CTBP1 0.018114 CDKN2A 0.335626

KDR 9 TPM1 0.018056 NCOR1 0.335626

LRP2 9 PTHLH 0.017657 TGFBI 0.335165

TCF3 9 TBL1X 0.016927 VCAN 0.334705

NOV 8 CSF2 0.015788 HSPA5 0.334247

PTHLH 8 GSTA1 0.015304 CLTCL1 0.333333

CDKN1B 8 KDR 0.015185 SKIL 0.333333

GADD45A 8 MMP13 0.014604 PLG 0.332879

GRB10 8 ANXA2 0.01411 PTHLH 0.332879

LAMA5 8 CLTCL1 0.013602 PRKAR2A 0.332425

VTN 8 MAPK1 0.012772 MAP3K5 0.330623

CBL 8 TCF3 0.012502 LAMA5 0.330176
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Fig.3: Selection of central nodes for pathway enrichment analysis can detect critical signaling pathways. In the enriched 
protein-protein interaction (PPI) networks, 62 genes for 24 hours treatment network and 60 genes for 48 hours treatment 
network were chosen as nodes with high centrality. These central nodes are related to 29 and 49 highly connected pathways in 
A. 24 hours and B. 48 hours, respectively. Pathways with adjusted P≤0.05 are shown. Color represents the gene ontology (GO) 
term level.

A

B
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Fig.4: Pathway enrichment analysis with total genes in the enriched network is not informative. Pathway enrichment analysis with all 
199 genes in 24 hours, or 301 genes in 48 hours treatment in enriched PPI networks only demonstrated A. 16 or B. 18 poorly inter-con-
nected pathways, respectively. Pathways with adjusted P≤0.05 are shown. Color represents the gene ontology (GO) term level.

A

B



          CELL JOURNAL(Yakhteh), Vol 18, No 4, Jan-Mar (winter) 2017 530

Central Nodes in PPI Drive Critical Functions

Discussion
In this study, we reanalyzed a microarray data-

set to determine gene expression alteration in re-
sponse to TGFβ-1 in a human kidney cell line. The 
investigators who originally generated this data 
emphasized the involvement of Notch signaling 
pathway based on a few DE genes (6). In contrast, 
we have constructed PPI networks for DE genes in 
the time points of 24 and 48 hours treatment. We 
found that expansion of these networks followed 
by selection of central nodes for pathway enrich-
ment analysis is an efficient method to recognize 
key signaling pathways in response to TGFβ-1 
stimulation. Our analysis also predicted the poten-
tial role of some novel pathways in this in vitro 
model and also pointed out time-dependent activa-
tion of particular pathways. Interestingly, the same 
investigators later repeated the experiment and as-
sessed the mRNA expression profile by RNA-Seq 
and found that this technique is superior to micro-
array in identification of the DE genes and altered 
signaling pathways (11). Noteworthy, the signaling 
pathways determined by our analysis on the origi-
nal microarray dataset is similar to the pathways 
identified with RNA-Seq data.

An interesting finding in this study was that 
pathway enrichment analysis with the DE genes 
in the microarray experiment was not efficient for 
prediction of key signaling pathways. However, 
it was expected that all important genes were not 
regulated at the mRNA level and so they were not 
detectable by mRNA microarrays. Therefore, to 
compensate for this limitation, we constructed a 
PPI network of DE genes and then enriched this 
network by adding genes that were previously 
known to be interacting with the initial network 
nodes. This expanded gene set was more inform-
ative for detecting signaling pathways. Indeed, it 
is perfect to perform multi-level assessments in 
biological experiments, but for practical reasons 
it is not commonly feasible. In this case, it is pos-
sible to measure changes at one level and then 
make bioinformatics predictions to fill the gaps 
at other levels.

Several previous studies have shown that highly 
connected nodes (hubs) in the networks, deter-
mined by degree parameter, are vital for the or-
ganism survival (12). Next studies revealed that 
essential genes in the network can be determined 

not only by degree but also by other centrality pa-
rameters, such as betweenness or closeness cen-
trality (13, 14). Here, we have used a combination 
of these three network topology parameters to de-
termine the central nodes. Interestingly, pathway 
enrichment with these central genes was more in-
formative than enrichment with the initial genes or 
even with the total genes in the expanded PPI net-
works. This observation is in line with our recent 
study on diabetic nephropathy showing the central 
network nodes tend to be present in signaling path-
ways and cross talks (15).

In pathway enrichment analysis, Hippo, PDGF, 
and FGFR signaling pathways were detected only 
in the second time point, 48 hours treatment. Ac-
tually, the initial activation of upstream signaling 
pathways detected in 24 hours treatment may lead 
to the expression of genes, related to these three 
pathways after 48 hours. This finding on time-spe-
cific expression of genes underscores the impor-
tance of time-course designs for gene expression 
analysis experiments.

Most of the predicted pathways in our analysis 
such as Notch, TNF, P53, and TGFβ signaling 
have been previously known to be involved in the 
pathogenesis of CKD (16-19), whereas, for some 
others, such as platelet degranulation pathway, 
there is not currently direct experimental proof for 
participation in renal fibrosis. However, previous 
experiments have shown megakaryocytes as me-
diators of fibrosis in a subset of hematologic ma-
lignancies, idiopathic pulmonary fibrosis, as well 
as bone marrow (20-22). The role of megakaryo-
cytes in kidney fibrosis is an interesting topic for 
future studies.

Conclusion
We have here employed a holistic approach to 

assess the consequences of TGFβ-1  stimulation 
in kidney cells. Although, high-throughput tech-
niques are frequently applied in biological investi-
gations, data interpretation is yet commonly limit-
ed to the assessment of most up or down-regulated 
factors missing the huge effect of interactions for 
genes with subtle expression change. Systems bi-
ology provides novel concepts and methods to in-
fer the underlying mechanisms of biological phe-
nomena from omics raw data and hopefully will 
bring a higher quality of life to those suffering 
from chronic diseases.
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