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The interaction between molecular biology and embryology made an
extensive progress in the research on gametogenesis, fertilization and early
embryogenesis in mice. In this article, molecules involving in meiotic
maturation and apoptosis of oocytes, sperm-oocyte interactions and early
cleavage of fertilized embryos in mice are described including our recent
following experiments. 1) Phosphatidylinositol 3-kinase and Akt participate in
the follicle stimulating hormone-induced meiotic maturation of mouse
oocytes. 2) Mos plays a crucial role in normal spindle and chromosome
morphology and the reactivation of maturation promoting factor after first
meiosis. 3) Follicular atresia is caused by apoptosis and the apoptosis
associated with internucleosomal DNA fragmentation is directly regulated by
the Fas-Fas ligand system. 4) Integrin a6B1 is involved in sperm-egg binding
leading to fusion via direct association of the integrin a6 with sperm. 5) MAP
kinase cascade is activated at the M-phase and some MAP kinases other
than ERKs are activated during early cleavage of fertilized eggs.
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Introduction

Recently, molecular basis of gametogenesis,
fertilization and early embryogenesis has
bocome again a subject of interest, because
the technologies developed in molecular
biology, biochemistry and cytochemistry has
been introduced in these field and a number of
regulatory protens and genes has been
identified in the events of these processes. In
this article, recent advances in our study of
meiotic maturation and apoptosis of oocytes,
sperm-oocyte interactions and early cleavage
of fertilized embryos in mice are discussed.

Phosphatidylinositol 3-kinase (PI3K) and Akt in
the meiotic maturation

Fully grown mammalian oocytes are arrested
in ovarian follicles at the diplotene stage of the
first meiotic prophase by meiosis-arresting
factors such as cAMP (1) and purines such as
hypoxanthine (2). The resumption of meiosis,
morphologically identified by germinal vesicle
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breakdown (GVBD), is triggered in healthy
follicles by preovulatory luteinizing hormone
(LH) surge. Progression of meiosis beyond
GVBD involves chromosome condensation
and alignment of the metaphase | spindle,
segregation of homologous chromosomes,
emission of the polar body (PB1), and
metaphase MIl spindle formation. GVBD and
progression of oocytes to metaphase Il is
usually referred to as meiotic maturation. At
the diplotene stage of the first meiotic
prophase, oocytes undergo gonadotropin-
independent spontaneous meiotic maturation
when they are removed from mature follicles
and cultured in vitro in a suitable medium (3).
Oocytes also mature in vitro under the
stimulation of follicle stimulating hormone
(FSH) or other hormones when spontaneous
maturation is prevented by meiotic inhibitors
such as hypoxanthine and cAMP-elevating
agents (2). FSH-induced meiotic maturation
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requires the presence of cumulus cells, which
are thought to be the source of a putative
meiosis-inducing signal (4).

FSH-induced meiotic resumption requires
activation of phosphoinositide metabolism and
release of intracellular free calcium in mouse
cumulus-oocyte complexes (COCs), and both
oocyte and somatic cells are potentially
sensitive to these messengers (5). It is
suggested that following positive stimulation
by gonadotropin, inositol triphosphate and
possibly calcium may be generated in cumulus
cells and subsequently transferred to the
oocyte via intracellular communication. PI3K is
known to play critical roles in signal
transduction processes related to a variety of
cellular activities such as cytoskeletal re-
arrangement, cellular migration, differentiation,
protection against apoptosis and mitogenesis
(6). Akt, also known as protein kinase B, was
identified as a serine-threonine kinase that
functions downstream of PI3K (7). The
activation of Akt is thought to be a critical step
in the PI3K pathway that regulates cell growth
and differentiation. It is also correlated with
cell survival in a wide variety of cells, including
those of epithelial, mesenchymal, and
neuronal origin (8). During meiotic maturation,
the inhibition of PI3K activity by LY294002 in
cumulus cells interferes with the
gonadotoropin-stimulated meiotic resumption
of porcine oocytes (9). In rat granulosa cells,
FSH increases Akt phopshorylation and
activation in a manner that is cAMP-
dependent and PI3K-dependent (10). The
PI3K/Akt pathway also plays a role in the
FSH-stimulated  expression of  X-linked
inhibitor of apoptosis (XIAP), a factor that
which suppresses the induction of apoptosis in
rat granulosa cells (11). In Xenopus oocytes,
PI3K/Akt regulation plays an essential role in
the resumption of meiosis (12). However, the
role of PIBK and Akt in mammalian oocytes
during meiotic maturation is not fully
understood. Then, we examined the role of
PI3K during meiotic maturation in mouse
oocytes, and our results suggest that PI3K
participates  in FSH-induced  cumulus
expansion and meiotic maturation in mouse
oocytes. When FSH-induced COCs were
treated with LY294002, GVBD was inhibited at
100 pM, while PB1 emission was suppressed
in a dose-dependent manner. In vitro, cumulus
expansion occurs when isolated COCs are
treated with FSH (13). We also observed the
inhibition of cumulus cell expansion by
LY294002. The oocyte meiotic maturation
process is initiated by expansion of the
cumulus cells and GVBD. Cumulus expansion
is also required for normal ovulation rates in

vivo (14). The cytoskeletal modification and
loss of gap junctions accompanying cumulus
expansion in COCs are closely related to
oocyte meiotic progression (15). The details of
the signal transduction pathway and
maturational processes are not yet resolved,
but various studies suggest that luteinizing
hormone (LH) promotes an increase in cAMP
levels within the granulosa cell compartment
and a decrease in cAMP in the oocyte, thus
indicating the resumption of meiosis as well as
cumulus expansion (16). Recently, in mouse,
it is reported that gonadotropin induces both
the resumption of meiosis and cumulus
expansion by mechanisms requiring the
activation of mitogen-activated protein kinase
(MAPK) in cumulus cells, but this activation
cannot occur in the absence of oocytes, and is
likely mediated by one or more paracrine
factor (17). Thus, oocytes enable the cumulus
cells to produce, in response to gonadotropin-
induced elevation of granulosa cell cAMP, a
return signal that induces the resumption of
meiosis (17). In porcine COC, PI3K activity in
cumulus cells contributes to the activation of
MAPK, and to meiotic progression beyond Ml
stage (18). Our results suggest that PI3K
activity participates in FSH-induced meiotic
maturation in mouse COCs. Therefore, PI3K
activity in mouse cumulus cells may be
contribute to the activation of MAPK and
meiotic maturation.

We next examined whether LY294002
affects oocytes directly. Several previous
studies have suggested that FSH could
stimulate the cumulus cells to generate a
meiosis-activating factor, e.g. Ca®* (19) or
meiosis-activating sterol (MAS) (20), which
positively overcomes the meiotic arrest
induced by dbcAMP or hypoxanthine and
plays a potent physiological role in triggering
gonadotropin-induced meiotic  resumption.
Since gonadotropin receptors are absent from
oocytes, FSH promotes GVBD via an indirect
mechanism mediated by the cumulus cells
rather than by a direct action on the oocytes
(21). Therefore, we examined the effect of
LY294002 on denuded oocytes (Dos) cultured
in the medium containing FF-MAS. 100 uM
LY294002 treatment of DOs inhibited PB1
emission, but not GVBD. These results
suggest that PI3K activity in cumulus cells
participates in GVBD, while PB1 emission
requires PI3K activity in oocytes. In this
experiment, we addressed whether LY294002
affects oocytes directly. Therefore, it was
necessary to use same culture conditions for
both FSH- and FF-MAS-induced experiments
in the present study, e.g. volume of droplet
overlaid with paraffin liquid, while FF-MAS
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may be absorbed by paraffin liquid. Indeed,
FF-MAS induced PB1 emission rate was not
high (38.0%), while 62.7% of oocytes
underwent GVBD. To just examine the effect
of LY294002 on FF-MAS induced oocyte
meiotic maturation for DO, culture conditions
without layer of paraffin liquid may be better to
evaluate the PI3K function during meiotic
maturation.

Akt was identified as a serine-threonine
kinase that functions downstream of PI3K (7).
The activation of Akt is thought to be a critical
step in the PI3K pathway that regulates cell
growth and differentiation. Akt becomes
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phosphorylated at two residues, Thr*®® and

Ser*”®, and both are required for full activation
(22). Therefore, we examined the distribution
of phosphorylated Akt during meiotic
maturation in mouse oocytes. Confocal
microscopy revealed that Thr*®®
phosphorylated Akt was localized as dots
around chromosomes and in the cytoplasm in
PMI oocytes. At Ml and MII, four intense dots
were observed. Merged figures of staining for
phosphorylated Akt, microtubules and nuclei
showed that Thr*® phosphorylated Akt was
present in the spindle pole (Fig 1).

308

Fig 1: Cellular localization of Thr

phosphorylated Akt during in vitro maturation (A,D,G). COCs were cultured in

FSH-induced culture condition. Qocytes at prometaphase 1 (PMI), MI and MII were collected at 8 to 10 hr, 10 to 12 hr
and 18 hr after the start of culture in respectively. The meiotic stages were prometaphase I (A-C), metaphase I (D-F),
and metaphase 11 (G-1). Nuclear status and microtubules were visualized for counter-staining, (B,E,H) and merged with

308

stainig of Thr

phosphorylated Akt (C,F,I). Green, red and blue show Akt, nuclear status and microtubules,

respectively. The arrow indicates the first polar body. Bar = 10 pum.
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In most animal cells, the microtubule
organizing center (MTOC) is composed of a
pair of centrioles surrounded by an electron
dense material, the PCM, and it is within this
material that the MTOC activity is located (23).
Mouse MII oocytes as well as MI oocytes and
most probably oocytes arrested in meiotic
prophase, do not have centrioles (24).

473

Fig 2: Cellular localization of Ser
FSH-induced culture condition. Oocytes at prometaphase I (PMI), MI and MII were collected at 8 to 10 hr, 10 to 12 hr
and 18 hr after the start of culture in respectively. The meiotic stages were prometaphase I (A-C), metaphase I (D-F),
and metaphase II (G-1). Nuclear status and microtubules were visualized for counter-staining, (B,E,H) and merged with
staining of Ser’” phosphorylated Akt (C,F,I). Green, red and blue colors show Akt, nuclear status and microtubules,
respectively. The arrow indicates the first polar body. Bar = 10 um.

The poles of the meiotic spindle are composed
of bands of electron dense PCM (24).
Therefore, Thr*® phosphorylated Akt was
located in PCM at Ml and MII. In contrast, the
distribution of Ser*”® phosphorylated Akt was
similar to the localization of microtubules at
prometaphase | (PMI) and the present in
spindle at Ml and MII (Fig 2).

phosphorylated Akt during in vitro maturation (A,D,G). COCs were cultured in

(This figure has also been printed in full-color at the end of the issue.)
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When COCs were treated with LY294002 in
FSH-induced meiotic maturation, the amount
of Thr®® phosphorylated Akt was decreased to
very low to undetectable levels in PMI, Ml and
MIl  oocytes. The distribution of Ser*’®
phosphorylated Akt in LY294002-treated PMI
oocytes was similar to that in normal PMI
oocytes, whereas aberrant distribution and
very low to undetectable levels of expression
were seen in LY294002-treated MI and Mil
oocytes, respectively. These results suggest
that Akt activity participates in FSH-induced
meiotic maturation as a downstream effector
of the PI3K pathway in mouse oocytes (25).
Akt is best known for its anti-apoptotic
effects (26) and plays a role in inhibition of
entry into the S phase (27). However, there is
very limited information regarding the G2/M
phase of the cell cycle. Akt activity is high at
the G2/M phase in MDCK renal epithelial cells
(28), PANC1 cells, pancreatic carcinoma cell
lines, and normal human fibroblasts (29). In
MDCK cells, the inhibition of PI3K induces
apoptosis and decreases M-phase promoting
factor (MPF) activity at G2/M phase (28). In
HEK293 cells, Akt controls G2/M cell cycle
progression, and activation of Akt can
overcome both the p53-independent G2/M cell
cycle checkpoint and apoptosis induced by
DNA damage (30). It was recently reported
that Akt is phosphorylated during mitosis and
Thr*® phosphorylated Akt is present at the
centrosome in Hela cells (31). Akt also
phosphorylates downstream kinase glycogen
synthase kinase-3 (GSK-3), which s
constitutively active in resting cells. Phospho-
GSK-3 is abundant at the centrosome and
spindle pole (31). GSK-3 phosphorylation
occurs concomitantly with the appearance of
phosphorylated and active Akt at the
centrosome. Inhibition of GSK-3 promotes
defects in microtubule length and
chromosomal alignment during prometaphase.
However, as PI3K inhibitors do not appear to
affect the mitosis-specific phosphorylation of
Akt or GSK-3 in Hela cells, it may be that Akt
is activated in a phosphoinositide-independent
manner during mitosis (31). In contrast,
inhibition of mouse oocyte GSK-3 had no
significant influence on viability, morphology,
or development to MIl, whereas the inhibitor
caused abnormal spindle formation and
significantly increased incidence of abnormal
homologue segregation during first meiotic
division (32). These and our present results
suggest that PI3K-Akt-GSK-3 pathway may
have important role in mouse oocyte meiotic
maturation. Furthermore, Akt and GSK-3 are
involved in meiosis and mitosis, whereas
signal transduction pathway of Akt-GSK on
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meiotic maturation in mouse oocytes may be
different from mitotic division in cells. Although
it is unknown whether the localization of
phosphorylated Akt has any role in PCM or the
spindle at MI and MIl during meiotic
maturation in mouse oocytes, LY294002
suppressed meiotic maturation and caused a
decrease in the level and aberrant distribution
of phosphorylated Akt. These results suggest
that the PI3K/Akt pathway functions in mouse
oocytes during FSH-induced meiotic
maturation. In contrast, our results suggest
that PI3K activity in cumulus cells participates
in GVBD and the expansion of cumulus cells.
In cultured rat granulosa cells, FSH increases
Akt phopshorylation and activation in a
manner that is cAMP-dependent and PI3K-
dependent (10). The PI3K/Akt pathway also
plays a role in the expression of FSH-
stimulated XIAP, a factor which suppresses
the induction of apoptosis in rat granulosa
cells (11). Therefore, the PI3K/Akt pathway
may function in mouse cumulus cells during
FSH-induced meiotic maturation.

Taken together, is suggested that

spontaneous meiotic maturation in mouse
oocytes may not require the PISK pathway
(Fig 3).
It has been reported that inhibitions for
phosphoinositide metabolism (5), MAPK (33)
block FSH-induced but not spontaneous
meiotic resumption in mouse oocytes. It also
has been reported that FF-MAS induced
maturation of mouse oocytes appear to use
different  signal transduction  pathways
compared with spontaneous meiotic
maturation (34). These reports suggest that
spontaneous maturation probably occurs
through a different mechanism. Spontaneous
maturation fundamentally involves removal of
the inhibitory influence imposed by the
follicular environment. However, this model
does not reproduce accurately the normal
mechanism operating in vivo, and therefore it
does not appear to be the most appropriate
approach (5). In contrast, systems in which
meiotic maturation is induced by
gonadotropins or other agents under
conditions that prevent spontaneous
maturation offer a more physiological model in
which reinitiation of meiosis, as it presumably
occurs in vivo, is activated by a signal that
requires interaction between the oocyte and
follicle (5). Therefore, our results suggest that
PI3K may be involved in gonadotropin-induced
meiotic maturation in vivo (Fig. 3). Because
the inhibition of meiotic maturation in our
culture condition was not complete by
LY294002, there is a possibility the interaction
of other pathway with PI3K (25).
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Fig 3: Schematic representation of mechanism of the oocyte maturation.

FSH induces GVBD in cumulus cell-enclosed oocytes. PI3K involved in gonadotropin-induced meiotic maturation.
FSH via PI3K also phosphorylates PKB/Akt. Phospho-Akt present in spindle at M-phase and it may be involved in
spindle formation and chromosome alignment. The bottom figure shows that the activity changes mos (blue), MAPK
(green) and MPF (red) in meiotic maturation. Mos has been shown to be required for MAPK activation and to be

involved in microtubule organization.

Mos in meiotic maturation in oocytes in culture
In Xenopus oocytes, the c-mos proto-
oncogene product (Mos) is required for
activation of the maturation promoting factor
(MPF) in G2 arrested oocytes, for reactivation
of MPF after metaphase |, for transition to
metaphase Il without DNA replication, and for
maintaining high MPF activity in metaphase |
oocytes (35). Mos has a serine-threonine
kinase domain (36). In Xenopus oocytes, Mos
activates MAPK kinase by direct
phosphorylation, and subsequently activates
MAPK (37). It has been shown that the above-
mentioned Mos functions in Xenopus oocytes
are mediated by MAPK activity (38).

In contrast, the function of Mos in mouse
oocytes is unclear, although Mos has been
thought to play important roles in oocyte
maturation because of the exclusive
transcription in oocytes (39). When anti-Mos
antibody or antisense oligonucleotide was
microinjected into immature mouse oocytes,
various results were reported. These were: the
inhibition of GVBD, the normal induction of
GVBD but the inhibition of first polar body
emission, and the normal induction of first
polar body emission but entrance into
interphase instead of second meiosis (40).

Recently c-mos knockout mice were
generated by homologous recombination in
embryonic stem cells (41). These mutant mice
have truncated Mos that has no kinase activity.
Oocytes obtained from the c-mos knockout
mice have been reported to undergo GVBD
and mature normally with a frequent
spontaneous  parthenogenetic  activation,
indicating that Mos is not essential for oocyte
maturation in the mouse (41). Recently, Mos
has been shown to be required for MAPK
activation and to be involved in microtubule
organization during meiotic maturation in the
mouse (42).

We used c-mos knockout mouse oocytes and
examined the roles of Mos in mouse oocyte
maturation and fertilization in more detail,
including whether Mos controls MAPK and
MPF activity (43). In sharp contrast to the lack
of an effect of Mos on the progression of first
meiosis in the mouse, the abnormalities of
chromosomes and alpha-tubulin morphologies
in the metaphases of homologous mutant
oocytes indicate that Mos participates in
chromosome condensation and microtubule
reorganization. Zhao et al. (44) reported that
about 90% of oocytes that received an
antibody to Mos did not assemble a meiotic
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spindle. Mos has been implicated in the
reorganization of the microtubules, which
leads to formation of the spindle and the
spindle pole (45). Mos overexpression in
somatic cells induced meiotic-like alterations
in the mitotic spindle (46). Abnormalities in the
organization of the microtubules and
chromatin were recently reported in c-mos
knockout mouse oocytes (42). The
morphological abnormalities induced by the
loss of Mos in our study are consistent with
these previous reports and confirm that Mos
plays an important role in the reorganization of
microtubules and chromosome condensation.

In our study, MAPK activity was assayed
throughout mouse oocyte maturation in wild-
type, heterozygous mutant, and homozygous
mutant mice. In heterozygous mutant and
wild-type oocytes, the fluctuation patterns
were in close agreement with those in
previous reports: the activity was significantly
increased at 4 h of culture, and was
maintained at about 5 to 7 times the initial
activity during 4-16 h of culture (47). On the
other hand, MAPK activity of homozygous
mutant oocytes did not significantly fluctuate
throughout maturation and was clearly lower
than that of wild-type oocytes. It has been
shown by SDS-PAGE that mouse MAPK was
present as 42- and 44-kDa bands, and the
migration rate was decreased when MAPK
was activated by phosphorylation (42). The
two bands at 42 and 44 kDa were detected in
all three genotypes in our study, and a band
shift was also observed at 8 h of maturation
when MAPK activity was high in heterozygous
mutant and wild-type oocytes. In homozygous
mutant oocytes, however, no decrease in the
migration rate was detected at 8 h of culture
when the oocytes were at the first metaphase.
Recently, the same result has been reported
in a different strain of c-mos knockout mouse
oocytes (42). These results indicate that Mos
physiologically  stimulates MAPK  during
maturation of murine oocytes as in Xenopus
oocytes. MAPK activation is a prerequisite for
GVBD in Xenopus oocytes (38). Our results
suggest, however, that in murine oocytes,
MAPK activation is not essential for GVBD
and first polar body emission. In mouse
oocytes, MAPK is localized in microtubule-
organizing centers (47). Verlhac et al. (48)
reported that microtubule and chromatin
behavior was controlled by MAPK activity
during meiosis in mouse oocytes. We
therefore considered that the morphological
abnormalities in homozygous mutant oocytes
referred to above contributed to this low MAPK
activity caused by the loss of Mos. In our study,
MPF activity was low in the G2 arresting
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oocytes and high in the first and the second
metaphase oocytes, with a transient decrease
at first polar body emission.

There was almost no difference among the
oocytes of wild-type, heterozygous mutant,
and homozygous mutant mice until first polar
body emission, indicating that Mos does not
stimulate MPF activity directly and that MPF
and MAPK activities are regulated
independently. These data suggest that the
normal fluctuation in MPF activity can cause
the normal process of oocyte maturation in
spite of the loss of Mos and MAPK activity,
confirming the importance of MPF in oocyte
maturation in the mouse. One of the most
drastic abnormalities in c-mos knockout
mouse oocytes was their entrance into the
interphase instead of second meiosis after first
polar body emission. In these oocytes, MPF
was inactivated to the basal level instead of
being reactivated after the decrease in polar
body emission. Furuno et al. (49) have
reported that suppression of DNA replication
during meiotic divisions in Xenopus oocytes is
accomplished by the Mos-mediated premature
reactivation of cdc2 kinase. Oocytes injected
with  antisense  c-mos  oligonucleotides
completed the first meiotic division but failed to
initiate second meiosis and reformed a
nucleus (40). Our results are consistent with
these reports, and suggest also that in the
mouse Mos plays a crucial role in the
reactivation of MPF after the first polar body
emission. In our study, however, 56% of
oocytes in the homozygous mutant were not
activated after first meiosis and reached the
second metaphase in spite of the loss of Mos.
This indicates that c-mos deletion induces
some compensatory factors that reactivate
MPF after first meiosis, although there are
wide variations in the compensatory efficiency
of the oocytes. Verlhac et al. (42) reported that
their c-mos knockout oocyte did not require
Mos for MPF reactivation after the first meiosis,
prompting us to think of the high
compensatory activity in their mice. Details of
these factors are still unknown, but our results
indicate that a compensatory action other than
the MAPK cascade may be at work, since
MAPK in homozygous mutant oocytes was
maintained in an inactive form throughout
maturation (50). When matured c¢-mos
knockout oocytes were activated by
fertilization or ethanol stimulation, some
oocytes were transformed into metaphase Il
instead of interphase. The phenomenon of
metaphase Il has already been reported by
Kubiak (51). These studies demonstrated that
metaphase Il frequently appeared at 11-13 h
after gonadotropin injection, due to ethanol
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stimulation and fertilization, but our and his
experimental conditions were different,
because all heterozygous oocytes entered the
interphase after activation. Under normal
conditions in Xenopus oocytes, the stimulus of
fertilization destroys cyclin B by the ubiquitin
pathway and Mos by calmodulin-dependent
protein kinase Il or the N-terminal proline-
dependent ubiquitin pathway (52), so that the
MPF activity is decreased and the cell cycle
progresses into the interphase. Under the
conditions of our study, however, the MPF
activity was maintained not by Mos but
presumably by compensatory factors. We
therefore  present here the following
hypothesis to account for metaphase Il in c-
mos knockout mice. When the metaphase Il
arrested, the oocytes were penetrated by
sperm, degradation of cyclin B and a transient
decrease in MPF activity occurred and the cell

cycle progressed into the anaphase-telophase.

In these oocytes, however, since unknown
compensatory factors other than Mos may not
be degraded even if sperm penetrate the
oocyte, the decreased MPF activity may be
restored and the cell cycle then progresses
into metaphase Ill. Verlhac et al. (42) also
reported the appearance of metaphase lll in
their c-mos knockout mice, confirming the
presence of Mos-compensatory factors that
were not degraded after metaphase Il in the c-
mos knockout oocytes.

Fas-Fas ligand in apoptosis of cumulus-oocyte
complex

The majority of ovarian follicles including
oocytes have been revealed to undergo
atresia through a mechanism involving
apoptotic cell death, but the molecular
mechanisms underlying atresia remain to be
clarified. Previous studies have reported
several physiological markers associated with
follicular atresia, including detachment and
degeneration of the granulosa cell layer,
fragmentation of the basal lamina, reduced
DNA synthesis, invariably decreased estrogen
production, and decreased gonadotropin
binding in ovarian follicles (53). Zeleznik et al.
(54) showed the presence of an endonuclease
activity in rat granulosa and luteal cells that is
modified by the changes in gonadotropin
levels and is capable of inducing
internucleosomal DNA cleavage. Further
evidence has recently been reported indicating
that granulosa and thecal cells collected from
ovarian  atretic  follicles  display the
internucleosomal cleavage of DNA
characteristics of cells undergoing apoptosis
or programmed cell death (55). It has
therefore been clarified that apoptosis is the

underlying mechanism of ovarian follicular
degeneration during atresia (48). Fas
molecule, which is broadly expressed in
lymphoid and not-lymphoid tissues, is a
member of the tumor necrosis factor/nerve
growth factor receptor family inducing the
apoptotic cell death (56). On the other hand,
Fas ligand (FaslL) is a type Il transmembrane
protein highly homologous to tumor necrosis
factor to induce apoptosis in Fas-expressing
target cells. Although the expression of FasL
has been reported to be restricted
predominantly in the activated T cells and in
several tissues such as testis, kidney, small
intestine and lung (57), further studies have
recently shown the expression of FasL in other
tissues including ovary. In the immune system,
Fas and Fas L are involved in the reduction of
immune reactions as well as in T-cell-
mediated cytotoxicity (57). In the reproductive
system, Fas is expressed not only in the
mouse and human oocytes but also in the
mouse and human granulosa cells (58). We
also examined the contribution of Fas and its
ligand (FasL) in the process of follicular atresia
by using mouse intraovarian follicles and
gonadotropin-hyperovulated eggs (59).
Reverse  transcriptase/polymerase  chain
reaction-Southern blot hybridization
demonstrated positive expression of Fas in
both intraovarian oocytes and hyperovulated
eggs. In contrast, expression of FasL was only
detected in granulosa cells. These finding
were histologically confirmed by in situ
hybridization with Fas- and FasL-specific
probes. A time-course study showed that Fas
MRNA was positive in atretic follicles through
day 0 and day 2 of gonadotropin stimulation
and negative thereafter. Levels of FasL mRNA
were the highest on day 1 and tapered off
toward day5 of gonadotropin stimulation.
Levels of elongation factor | a mRNA, a
constitutive  element, were  constantly
maintained throughout the experimental period.
Co-culture of ovulated eggs, intact and zona-
free, and granulosa cells demonstrated
positive  TUNEL staining only in zona-free
eggs. Our findings indicate that follicular
atresia is caused by apoptosis. This apoptosis,
associated with internucleosomal DNA
fragmentation, is directly regulated by the
Fas/FasL system (50). It is possible that the
cell death in the ovarian atresia is modified by
other factors, such as Bcl-2 and related
proteins (60), acting as the primary regulators
of the Fas and FasL system. In fact it has
been reported that Fas-induced cell death is
partially inhibited by the overexpression of the
Bcl-2 gene, and it is completely inhibited by
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the coexpression of Bcl-2 and its binding
protein BAG-1 (61).

Nevertheless, taken together with our studies,
we propose that the system of Fas in oocytes
and FasL in granulosa cells is likely to be the
direct regulator of undergoing atresia in the
diverse species. Furthermore, morphological
observations (62) have shown that the zona
matrix in mammalian oocytes becomes denser
and wider during the development towards
tertiary follicles, being traversed by numerous
microfilaments with channel-like cytoplasmic
protrusions of the follicular granulosa cells.

In the preovulatory stage, the follicular
granulosa cells are gradually separated and
retracted from zona pellucida. It was therefore
strongly suggested that the molecular
interactions between Fas in oocytes and FasL
in granulosa cells could be interrupted by the
mature zona pellucida and the ovulatory
oocytes would be freed from follicular atresia
through the apoptotic mechanism.

Egg integrins in sperm-egg binding and fusion

The molecular events of sperm-egg binding
and fusion have been studied for decades.
Several investigators have reported
candidates for a ligand on the sperm plasma
membrane in mammals; for example, CD46
(63), DE (64), OBF-13 (65), MH61 (66), M29
and M37 (67). These studies were based on
immunological assays; a monoclonal or
polyclonal antibody inhibited sperm-egg
binding and/or fusion. Several lines of
evidence support the contention that a
candidate ligand on sperm is fertilin o/f. This
protein complex, originally called PH-30
antigen, was identified using the monoclonal
antibody, PH-30: Fertilin is localized to the
postacrosomal region, including the equatorial
region, in acrosome-reacted sperm from
guinea pigs, bulls and mice (68). The fertilin a
and B subunits were characterized as the first
members of a novel gene family, the ADAMs
(69). The ADAMSs contain a disintegrin domain
and a metalloproteinase domain (70). Peptide
analogs of the disintegrin loop of fertilin
inhibit sperm-egg binding, indicating that
fertilin is possibly involved in sperm-egg
binding (71). Recently, strong evidence for an
involvement of fertilin B in sperm-egg binding
was provided by Cho et al (72); mutant sperm
lacking fertilin B were found to be severely
impaired in binding to zona-free eggs although
they could fuse with approximately 50%
efficiency. Another possible candidate for a
ligand is the ADAM protein, cyritestin. Peptide
analogs of the disintegrin domain of cyritestin
also strongly inhibit sperm-egg binding (68).
These findings led us to propose that integrins
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are expressed on the egg surface and an egg
integrin can function as a sperm receptor. The
reason for this assumption is that the
disintegrin  domains of snake venom
metalloproteases bind to the integrin allb B 3
(GP lib/llla) (73). By analogy, it is likely that
fertilin and cyritestin are recognized by integrin
receptors through their disintegrin domains.
Many integrin receptors, such as a2, a3, a5,
a6, av, B 1, B 3and B 5, have been reported to
be expressed in mammalian oocytes at either
the mRNA or protein levels (74). The tripeptide,
RGD, derived from fibronectin, which is known
to be an integrin ligand, has been reported to
inhibit sperm-egg binding in hamsters and
humans (75). Echistatin, a snake venom
disintegrin loop that contains an RGD
sequence in its disintegrin loop, was also
shown to inhibit sperm-egg binding in
hamsters (76). These findings supported the
hypothesis that an egg integrin can function as
a sperm receptor. Another possible molecular
interaction between sperm and eggs was
presented by Anderson et al. (63). Human
acrosome-reacted sperm express a
membrane cofactor protein (MCP), which is a
complement component 3-binding and
regulatory protein. CR3 (complement receptor
3), which is also referred to as aM B 2 integrin,
is expressed on human oocytes. Anderson et
al. proposed a model in which the complement
component 3 fragment (C3b) mediates
gamete membrane apposition and fusion via
binding to MCP and CR83. But, this hypothesis
has not yet been proven. Mouse egg integrin
a6B1 was reported to be a strong candidate
for a sperm receptor by the following evidence:
1) The major integrins found to date on the
mouse oolemma are a6 $ 1 and av3. 2) A
function blocking antibody against integrin 6
inhibits sperm-egg binding. 3) A peptide
analog of the fertilin 8 disintegrin loop as well
as a function blocking anti-a6 antibody inhibits
binding of sperm to a6 transfected cells (77).
Evans et al (78) reported that the integrin 3 1
is responsible for sperm (fertilin B) binding to
eggs based on the observation that an
antibody that is reactive with several (1
integrins inhibited binding of sperm or
recombinant fertilin protein made in E. coli to
the surface of eggs. However, Evans et al.
concluded that the a6 subunit was not
involved as the anti a6 mAb GoH3 did not
inhibit binding of their construct. Conversely,
two recent studies have demonstrated that
both a disintegrin loop peptide (79) and fertilin
B purified from sperm (80) interact with the
egg integrin a6B1. Nevertheless, it remains
unsolved if egg integrin a6B1 binds directly to
a protein (e.g., fertilin B) on the surface of
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intact sperm and, if so, in which event the a6 3
1 participates.

We first identified egg molecules with binding-
affinity for sperm. The strongest candidate
was a protein with an apparent molecular
mass of 135 kDa on reducing gels. This
protein was identified as integrin a6 subunit by
an immunodepletion experiment using the
anti-a6 mA (GoH3). Furthermore, when eggs
were fertilized, the integrin a6 and 31 subunits
were accumulated at the sperm-binding site at
an early stage of fertilization. These findings
provide the first evidence that the egg integrin
a6 binds to the sperm surface and that sperm
binding results in clustering of a6p1 integrins
on the egg. Zona removal of mouse eggs with
proteases results in loss of egg fertilizability
(81). Some proteins are reported to be very
sensitive to protease treatment, such as with
chymotrypsin and trypsin. A 94 kDa protein
was modified by both a-chymotrypsin and
trypsin (82), and the recovery of a 94-kDa
protein after egg incubation coincided with the
recovery of egg fertilizability (83). Calarco (84)
demonstrated that 97-kDa and 66-kDa
proteins were also modified by protease. As
well as proteases, the egg surface proteins
are thought to be damaged by acid.
Interestingly, = more  biotinylated  bands
appeared on a gel of acid-treated eggs than of
chymotrypsin-treated eggs, although we
previously showed that the fertilizability of
acid-treated eggs was less than that of
chymotrypsin-treated eggs just after zona
removal (63). This suggests that the strongest
band in chymotrypsin-treated eggs, including
135-kDa protein is a candidate for a sperm
receptor. From our previous report, the
fertilizability of acidtreated eggs reaches that
of chymotrypsin-treated eggs if they are
allowed to recover for 3 hr after zona removal
(81). Consistent with this result, some bands,
including a 135-kDa band, were increased.
Therefore, these proteins were assumed to be
candidates for a sperm receptor (85).

It has been reported by some laboratories
that the integrin a6B1 is involved in sperm-egg
interactions (80). However, it is still unclear
whether the integrin a6B1 can bind directly to
the surface of intact sperm. Therefore, we
examined egg molecules with specific affinity
for intact sperm. The specific binding of egg-

derived molecule(s) is localized at sperm head.

This evidence suggests the possible
participation of the bound molecule(s) in
sperm-egg binding. Only a 135-kDa egg
surface protein showed a strong association
with sperm, although other molecules were

abundantly expressed on the “recovered” eggs.

No egg surface proteins bound to sperm when

pronase-treated eggs were used. The 135 kDa
protein that bound to intact sperm was
specifically depleted with the anti-integrin a6
mAb GoH3. Furthermore, GoH3 precipitated a
comigrating 135-kDa band from biotinylated
egg lysates. These results strongly suggested
that the sperm-associated 135-kDa molecule
is the integrin a6 subunit, and also that it can
adhere specifically to intact sperm. The fact
that the a6 integrin subunit appears to be the
major egg surface protein that binds to intact
sperm suggests that it may be the major
sperm receptor on the egg plasma membrane.
Involvement of the integrin B1 subunit in
binding was reported since a rabbit polyclonal
antibody that interacts with the 1 subunit
inhibited sperm-egg binding (78). Under our
experimental conditions the anti 31 mAb 9EG7
did not precipitate the integrin 31 subunit. And,
9EG?7 recognizes its epitope more readily in
Mn?*-containing  buffers than in Ca*-
containing buffers (86). Therefore, we
concluded that 9EG7 could not deplete the
integrin a6 1 effectively.

Integrins are the major cell surface
components associated with focal adhesion
plaques, which are thought to be centers for
the interaction of integrins and cytoskeletal
proteins and for transmembrane signaling (87).
Most of the integrins involved in formation of
focal adhesions are members of the 1 and
3 families (88). Therefore, if the integrin 1 is
functional as a sperm receptor, we could
hypothesize that focal adhesion-like structures
are formed at the site of sperm-egg binding
and fusion. The integrin a6 and 1 assembled
at the sperm-binding sites. The staining was
generally seen on one sperm per egg (data
not shown) and the frequency of cluster
formation correlated with the extent of sperm-
egg fusion, although three or more sperm
could bind to an egg. These findings suggest
that the integrin a6B1 assembled at the sites
where sperm-egg fusion occurred. One
possibility is that the integrins clustered only at
the sites where sperm binding was mediated
via the integrin a6B1. Several proteins are
known to mediate the interaction between
sperm and eggs (89). Therefore, sperm that
did not bind through the integrin a6f1 might
not be able to induce the clustering. The other
possibility is that modification of sperm
proteins during capacitation or acrosome
reaction, including pattern of localization,
changes in epitope  expression or
posttranslational modifications, might be
necessary to induce clustering even if sperm
binding was mediated by the integrin a6f1.
Only capacitated sperm could induce
aggregation of the integrin a6p1. Some sperm
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proteins that trigger integrin clustering may be
modified during capacitation and/or acrosome
reaction so that they can induce the integrin
clustering.

Our immunofluorescence data strongly
suggest that not only integrin a6 but also
integrin B1 participate in sperm-egg binding
and fusion (85). Other integrin molecules or
other proteins may also cluster at the sperm-
binding sites at the same time. In fact, in our
preliminary experiments vinculin, which is an
integrin-associated molecule, also assembled
at sperm-binding sites. Interestingly, integrin
a6B1 disappeared from the site of sperm
penetration. These molecules were completely
dislocated from the region lying over
fertilization cones at 60 min postinsemination
or later. According to analysis by scanning
electron microscopy, fertilizing sperm are
trapped in microvilli (83) and microvilli are
dislocated out of the region overlying the
fertilization cone (90). Taken together, the
distributions of integrin a6 and 31 appear to be
related to the distribution of microvilli, and our
results strongly suggest that the integrin a6p1
plays an integral role at an early, perhaps only
at an early stage of sperm-egg binding and
fusion. Both a6 and (1 null mutations in mice
are lethal, though the stages at which lethality
appear are quite different. The 1 null
mutation results in the deformation of the inner
cell mass at the early blastocyst stage (91),
while a6 null mutants develop to term, but die
of severe blistering of the skin (epidermolysis
bullosa) and other epithelia (92). Hence, the
questions of whether the a6B1 integrin is
essential for sperm-egg binding and fusion or
whether other integrins or other proteins could
serve these functions could not be addressed
by the a6 and 1 null mice. Rather, the direct
binding of the integrin a6 to intact sperm using
a biochemical approach and for the
localization of the integrin a6 and 1 subunits
at the sperm-binding site using an
immunocytochemical approach strongly
support the notion that the integrin a6f1 can
function as a sperm receptor in mice.

MAP kinase cascade during early cleavage

MAP kinase cascade is one of the main
signal transduction pathways expressed
ubiquitously in somatic cells, and it
transduces many extracellular signals into
the nucleus (93). Mitogen stimulations and
subsequent activation of the MAP kinase
cascade are essential for the proliferation of
somatic cells and the removal of mitogens
from somatic cell cultures results in their
G1/S arrest followed by entrance into the
GO-phase (94). The signal transduction
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pathway of the MAP kinase cascade is
thought to be as follows (95). Binding of
mitogens, such as insulin and growth factors,
to their receptors results in the activation of
Ras, a membrane-associated 21-kDa
protein belonging to the small GTP-binding
protein family, by its dissociation from GDP
and association with GTP. Raf-1 protein, a
75-kDa cytosolic serine-threonine kinase, is
then activated by transport to the membrane
and the subsequent interaction of RasGTP.
This process is suggested to involve 14-3-3
(96). The activated Raf-1 phosphorylates
serine residues of MAP kinase kinase and
activates it. Then the activated MAP kinase
kinase  activates MAP  kinase by
phosphorylation of its tyrosine and threonine
residues. Phosphorylated MAP kinase
translocates into the nucleus and
phosphorylates several substrates such as
DNA-binding proteins and other protein
kinases (95). In mammalian cells, 44-kDa
ERK-1 and 42-kDa ERK-2 are known as
MAP kinases activated by mitogen signals
(97) and 45-kDa MEK-1 and 47-kDa MEK-2
are reported to be MAPkinase kinases
locate upstream of the ERKs (98).

In Xenopus oocytes, the activation of
ERKs triggers the resumption of meiotic
maturation (99). This ERK activation is,
however, stimulated not by the Ras/Raf
pathway described above but by the c-mos
protooncogene product, Mos (100). In
mammals, ERK activation during meiosis
has also been reported for mouse (47), pig
(101), goat (102), rat (103), and bovine (104)
oocytes. The Mos-dependent regulation of
this ERK activity has been shown in c-mos
knockout mouse oocytes (42) and has been
suggested in bovine oocytes (105). These
studies indicate that the meiotic activation of
the MAP kinase cascade depends on
meiosis specific Mos production in oocytes.
After fertilization, the oocytes escape from
meiosis and enter into mitosis. In contrast to
somatic cells, mitosis in early embryos is
independent of exogenous mitogens, and
embryos can undergo cleavage in vitro
without the addition of any growth factors or
serum. The absence of phosphorylated
ERKs during early cleavage has been
shown in clam (105) and mouse (106)
embryos. Although these reports imply that
the MAP kinase cascade is inactivated
during embryonic mitosis, at present, the
presence and the activation state during
early cleavage of the molecules in the
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cascade described above has never been
reported. In our study, we determined
whether these molecules are present and
activated in mouse early embryos. The
results suggest that M phase-specific
activation of the MAP kinase cascade, from
Ras to MEK but not the ERKs, occurs
during mitosis of mouse early embryos.

We have shown the presence of
molecules involved in the MAP kinase
cascade--Ras, Raf-1, 14-3-3, MEK-1, and
ERKs--in  mouse early embryos by
immunoblotting. It is well known that
exogenous mitogens are not necessary for
early embryo culturing, whereas the addition
of a mitogen is a prerequisite for cell
proliferation in somatic cell cultures.
Moreover, the absence of activated ERKs
has been reported during early embryo
development (107). It seems, therefore, to
be widely accepted that the MAP kinase
cascade is not activated during early
embryo development. Surprisingly, however,
a clear shift up of the Raf-1 band in SDS-
PAGE was observed at the M-phase of the
first and second cleavages, but not at the
G2/M phase, in our study. Because a shift
up of the Raf-1 band after activation by
phosphorylation has been reported (41), our
result might show the M-phase-specific
activation of Raf-1 during early mouse
cleavage (Fig 4) (108).

‘ Early cleavage of embryos ‘

Fig 4: Model for the MAP kinase cascade
during early cleavage of embryo.
Ras-Raf-1-MAPK cascade activates during
early cleavage of embryo. However, the
activation of ERK is not necessary.

Recent studies have shown that 14-3-3
associates with inactive Raf-1 in vitro (109)
and in NIH3T3 cells (96). It has been
suggested that 14-3-3 mediates Ras effects
on Raf-1 activation after mitogen stimulation
by transferring or anchoring Raf-1 to the
membrane and that 14-3-3 dissociates from
Raf-1 after its activation (96). Association of
14-3-3 with inactive Raf-1 was shown in
G2/M- and M-phase mouse early embryos,
and, furthermore, dissociation of 14-3-3
from activated Raf-1 was also detected in
the M-phase embryos. These results
strongly suggest a role for 14-3-3 in early
embryos as a mediator of Ras activity, as in
somatic cells, and imply that Ras is also
activated at the M-phase in mouse early
embryos. Activated Raf-1 phosphorylates
and activates MEK in somatic cells (94).
This phos-phorylated and activated MEK
can be detected by a shift up of the MEK
band in SDS-PAGE (110). In our study, as
was expected, a shift up of the MEK band
was also observed during the period of Raf-
1 activation. This indicates that the M-
phase-specific activation of the MAP kinase
cascade from Ras to MEK occurs in mouse
early embryos. In somatic cells, the absence
of mitogens results in G1 arrest of the cell
cycle, and the cells finally enter into the GO-
phase (94). Many studies of the MAP kinase
cascade in somatic cells focused on its roles
at the GO/G1-phase, and the activation of
the MAP kinase cascade at the M-phase
has not been reported, although MBP
kinase activity has been reported to be
higher in the M-phase than in the G1- and
S-phases (111). Therefore, the present
study might be the first report showing the
M-phase-specific activation of the MAP
kinase cascade during mitosis. Why the
embryonic MAP kinase cascade is activated
without mitogen stimulation is unclear. The
MAP kinase cascade was activated during
the meiotic maturation of mouse oocytes
(47), and this activation is regulated not by
the mitogen-stimulated Ras/Raf-1 pathway
but by the mos proto-oncogene product,
Mos, which is synthesized within the
oocytes (100). The MAP kinase cascade of
the mos-knockout mouse is not activated
during oocyte maturation (42). Mos s,
however, degraded after fertilization (100),
and, therefore, the embryonic MAP kinase
cascade should not be regulated by Mos. In
fact, Raf-1 was already activated at the
meiotic metaphase in our study, as reported
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previously (41). It has been reported that
early embryos contain mRNAs for many
mitogens and their receptors (112) and that
the addition of mitogens to the embryo
culture improves their developmental rates
(113). Embryonic autocrine/paracrine
secretion of mitogens has also been
suggested (114). It is probable, therefore,
that embryos stimulate their own MAP
kinase cascade at M-phase by their
autocrine/paracrine secretion of mitogens.

It should be noted that phosphorylated
forms of ERKSs, reported to be active ERKs
(47), were not detected at all during early
cleavage despite MEK activation. The
absence of active ERKs was not due to the
failure of the detection methods because the
phosphorylated active forms of ERKs were
detected in meiotic metaphase oocytes in
our study. The absence of active ERKs has
been suggested in early cleavage of clam
(106) and mouse (107) embryos and also in
M-phase-arrested HelLa cells (111),
although the activation of upstream
molecules of the MAP kinase cascade was
not examined in these reports. At present, it
is generally believed that ERKs are the only
physiological substrate of MEK and
conversely that MEK is the only kinase that
can phosphorylate both the tyrosine and
threonine residues of ERKs physiologically
(115). To the best of our knowledge, the
activities of MEK and the ERKSs follow the
same pattern in all reported studies, and our
study might be the only report showing the
dissociation of MEK and ERK activities (Fig.
4).

In the present study, MBP kinase activity,
which reflects the MAP kinase activity (116),
was assayed in early embryos; a relatively
low but significant activity was detected
during the M-phases in early cleavage
despite the absence of active ERKs. The
high MBP kinase activity at meiotic
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metaphase may reflect the active ERKs
present during this period. The origin of the
MBP kinase activity during early cleavage is
obscure because MBP can be
phosphorylated by kinases other than MAP
kinases (106). Heider et al. (111) reported
that the MBP kinase activity in the M-phase
was high in cultured HelLa cells, although
ERKs were not activated during the M-
phase. They showed the presence of a 40-
kDa novel MBP kinase and suggested that it
is a new member of the MAP kinase family.
It is well known that the synthesis of many
new proteins begins after the fertilization
stimulus in mammalian oocytes (117).
Therefore, it is probable that the new MAP
kinase, which can be activated by the
Ras/Raf-1 pathway, is synthesized in early
embryos and acts instead of ERKSs.

Why do embryos, and perhaps also M-
phase somatic cells, have to inhibit the
activation of ERKs? The activation of ERKs
in the M-phase was reported during meiotic
oocyte maturation (103). High ERK activities
have been shown to mediate the actions of
Mos on oocytes (100): the inhibition of DNA
replication between two consecutive meiotic
metaphases (118) and the prevention of
parthenogenetic activation as cytostatic
factor by arresting oocytes at the second
metaphase until fertilization (119).
Prevention of these inhibitory ERK actions
might be one explanation of the suppression
of ERKs in the mitotic M-phase. During
maturation, MAP kinases are present at the
microtubule-organizing center (120) and
affect spindle and cytoskeletal functions
(121) in addition to their above-mentioned
inhibitory actions. Therefore, one possible
explanation is a requirement for a new MAP
kinase that acts only on the cytoskeletal
functions, such as spindle formation, but not
as an inhibitor of DNA replication and
cytostatic factor during mitosis.

i
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