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Abstract
Objective: This study attempted to identify altered metabolism and pathways related to 
non-Hodgkin’s lymphoma (NHL) and myeloma patients.

Materials and Methods: In this retrospective study, we collected plasma samples from 
11 patients-6 healthy controls with no evidence of any blood cancers and 5 patients with 
either multiple myeloma (n=3) or NHL (n=2) during the preliminary study period. Samples 
were analyzed using quadrupole time-of-flight liquid chromatography mass spectrometry 
(LC-MS). Significant features generated after statistical analyses were used for metabo-
lomics and pathway analysis.       
Results: Data after false discovery rate (FDR) adjustment at q=0.05 of features showed 
136 for positive and 350 significant features for negative ionization mode in NHL patients as 
well as 262 for positive and 98 features for negative ionization mode in myeloma patients.  
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis determined that 
pathways such as steroid hormone biosynthesis, ABC transporters, and arginine and proline 
metabolism were affected in NHL patients. In myeloma patients, pyrimidine metabolism, 
carbon metabolism, and bile secretion pathways were potentially affected by the disease.                   
Conclusion: The results have shown tremendous differences in the metabolites of healthy 
individuals compared to myeloma and lymphoma patients. Validation through quantitative 
metabolomics is encouraged, especially for the metabolites with significantly expression 
in blood cancer patients.           
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Introduction
Blood cancers are a heterogeneous disease 

group that affect the body’s hematopoietic and 
lymphatic tissue (1). These cancers have higher 
incidence rates in men and evidence suggests 
that immunosuppression, infections, ultraviolet 
radiation, chemical exposures, and genetic 
susceptibility are involved in their pathogenesis 
(2). Among these cancers are non-Hodgkin’s 
lymphoma (NHL) and multiple myeloma. NHL are 

malignancies that arise from the lymphoid tissue, 
often with various clinical and biological features. 
According to histologic characteristics, NHL is 
divided into B- and T-cell neoplasms, especially the 
lymphocyte development stage and are classified 
additionally into clinical features (3). On the other 
hand, multiple myeloma is a malignancy of the 
plasma cells which results in an overproduction 
of monoclonal immunoglobulins (4). Similar to 
NHL, the pathogenesis of this cancer is poorly 
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understood but there are insights that link its 
clinical entity with the cancer’s etiology (5). 

Patients with diffuse large B-cell lymphoma 
(DLBCL), the most common lymphoid malignancy, 
rely on a regimen of cyclophosphamide, 
doxorubicin, vincristine, and prednisone (CHOP) 
as the main standard of care. This regimen has 
cured 35% of patients in phase 2 studies (6). A 
more intensive strategy which involves high-dose 
chemotherapy followed by autologous stem-cell 
transplantation (ASCT) has been found to cure 
nearly half of the patients with chemotherapy-
relapsed DLBCL (7). Recently, analysis of 
biologic heterogeneity has focused on individual 
genes that emphasized those with treatment 
outcome, known function on other malignancies, 
and normal lymphocyte development (8). 
Other than the possibility of highlighting 
potential pathogenic mechanisms of the disease, 
comprehensive molecular signatures of tumors 
might identify promising targets for therapeutic 
intervention (9, 10). Another therapeutic option 
for NHL patients, radioimmunotherapy (RIT), 
uses a monoclonal antibody coupled with a 
radionuclide to deliver radiation to the diseased 
sites. RIT has been extensively studied with 
encouraging results. Meanwhile, advances in 
multiple myeloma in clinical practice have 
reached a deeper understanding of the biology of 
its clone and interaction with the bone-marrow 
microenvironment where it resides (11). Being 
able to recognize the importance of the tumor 
microenvironment is one of the most important 
progresses in the field of this malignancy which has 
helped improve treatment options (12). However, 
patients encounter challenges such as drug 
resistance and toxicity after receiving treatment 
with available medications. Approximately 40% 
of patients who received bortezomib (1.3 mg/m2) 
twice weekly complained of peripheral neuropathy 
(13). On the other hand, novel therapies which 
include modulators of protein homeostasis, 
immunomodulatory agents, kinase inhibitors, 
targeting accessory cells and cytokines, and 
immune-based therapies appeared promising in 
the field of therapeutic development for multiple 
myeloma patients (14). Although these therapies 
involve improvement of existing treatment 
regimens or changing cellular targets, they have not 
considered other viewpoints such as metabolism 
of affected patients for possible relevance to drug 

efficacy, treatment failure, relapse of disease and 
other complications. Therefore, there is a need 
to recognize other methods that utilize advanced 
high-throughput technologies to address this 
particular concern.

Although systems biology taught us that 
genome, transcriptome, and proteome are 
important, metabolome is still considered to be the 
most representative of the phenotype (15). Thus, 
understanding the human cancer metabolome 
may be the best way to reveal phenotypic changes 
relative to biological functions, especially where 
metabolite concentrations can easily be traced (16). 
The introduction of metabolomics as an emerging 
technology in cancer research has led to useful 
information in the aspects of cancer metabolism, 
specifically for the central mechanisms in tumors. 
High resolution metabolomics (HRM) is popular 
in different fields of study due to its accurate 
and unbiased measurement of metabolites from 
organisms that use sensitive technologies such as 
nuclear magnetic resonance spectroscopy (NMR) 
and liquid chromatography mass spectrometry 
(LC-MS) (17, 18). LC-MS HRM can measure low 
molecular compounds in samples such as extracts, 
blood, and urine (19, 20). This technique is widely 
used because of its potential aid to understand the 
effects on different processes or pathways with 
the help of different databases such as Metlin 
(21) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) (22, 23). A previous study has 
applied this technique in the discovery of novel 
biomarkers related to lung cancer (24). In this 
preliminary study on metabolic profiling of blood 
cancer patients in South Korea, we evaluated the 
differentially expressed metabolites found in two 
hematologic malignancies-multiple myeloma and 
NHL using LC-MS-based metabolomics from 
plasma of patients. This study aimed to use HRM 
to identify affected pathways linked to these 
diseases which might open alternative viewpoints 
on the management and treatment of these blood 
cancers.

Materials and Methods
In this retrospective study, we collected plasma 

samples with consent from 11 patients after 
approval by the Ethics Committee of Health 
Service Center at Seoul National University. There 
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were 6 healthy controls (without blood cancers) 
and 5 patients with either multiple myeloma (n=3) 
or NHL (n=2) during the preliminary study period. 

Quadrupole time-of-flight liquid chromatography 
mass spectrometry 

We treated 50 µl sample aliquots with acetonitrile 
(1:2, v/v), after which they were centrifuged at 
14000 x g for 5 minutes at 4˚C to remove proteins 
(25). Samples were analyzed in triplicate using 
quadrupole time-of-flight LC-MS (Agilent, Santa 
Clara, CA, USA) for both positive and negative 
electrospray ionization modes. High-resolution 
metabolomics is mostly used to analyze highly 
complex metabolite mixtures since detection of mass/
charge (m/z) with 10 ppm or better mass resolution 
as well as mass accuracy substantially decreases the 
need for physical separation of metabolites prior to 
detection. Detection from 50 to 1000 m/z of ions 
at 20000 resolution over a 35-minute LC run with 
data extraction using apLCMS provides a minimum 
of 3000 reproducible features, many with sufficient 
mass accuracy to allow prediction of elemental 
composition (26). An m/z feature is defined by m/z, 
ion intensity, and retention time.
Metabolic profiling with univariate and 
multivariate statistical analysis

Data analyses were carried out using all 
technical replicates. The raw data was processed 
with apLCMS which produced the total features 
of the samples needed for statistical analysis. 
These features were averaged, log2 transformed 
and quantile normalized before we applied 
bioinformatics and statistical analyses which 
included univariate analysis, the Manhattan plot, 
and false discovery rate (FDR) adjustment to 
determine the significant metabolites between 
those with hematologic malignancies and healthy 
individuals (27). Thereafter, metabolic profiles 
were discriminated using Limma-hierarchical 
clustering analysis (HCA) to separate two groups 
in association with the differentiated metabolites. 
Limma is originally a package for the analysis of 
gene expression data that arises from microarray 
or RNA-Seq technologies. It provides the ability 
to make simultaneous comparisons between 
numerous targets (28, 29).

Data annotation and pathway analysis
The significant features were annotated using 

Metlin database (https://metlin.scripps.edu/) (25). 
The data from Metlin includes potential identity of 
the compound, mass, chemical formula, and KEGG 
numbers which are used to map these metabolites 
in a human metabolic pathway map found online 
at www.genome.jp/kegg/. This database predicts 
the number of potentially affected metabolites 
and pathways from the significant features 
identified and gives a visualization that may vary 
depending on the studied organism. Various types 
of information regarding reactions, network, and 
interactions is found in the KEGG pathway (30).

Results
Patient’s demographics are shown in Table 1.

Table 1: Patient demographics

Control
n=6
Mean ± SD

Myeloma
n=3
Mean ± SD

NHL
n=2
Mean ± SD

Age (Y) 48.7 ± 7.8 54.7 ± 8.7 52 ± 28.3

Female gender 33% 33% 0% 

WBC 
(thousands/µL)

10.29 ± 5.63 7.41 ± 1.68

RBC 
(millions/µL)

3.05 ± 0.29 3.14 ± 0.41

Hemoglobin 
(g/dL)

9.67 ± 0.35 9.35 ± 1.27

Hematocrit 
(%)

29.5 ± 1.3 30 ± 2.83

Platelets 
(thousands/µL)

114.33 ± 31.56 305 ± 98.99

Lymphocytes 
(%)

25 ± 21.07 4.9 ± 2.69

NHL; Non-Hodgkin’s lymphoma, WBC; White blood cell, and 
RBC; Red blood cell.

Statistical analysis of age difference showed that 
the age differences of control and patients was not 
significant (P>0.05).

Manhattan plot and two-way hierarchical 
clustering analysis 

We used the metabolome-wide association study 
(MWAS) to identify changes in the concentrations 
of metabolites from the plasma of control (without 
blood cancers) and case (lymphoma and myeloma) 



 CELL JOURNAL(Yakhteh), Vol 19, Suppl 1, Spring 2017 47

Medriano et al.

patients. Figure 1 shows the Manhattan plot 
of the significant features of lymphoma 
and myeloma patients for both positive and 
negative ionizations after FDR adjustment with 
a threshold of q=0.05. Of the 17282 aligned 
features from apLCMS in the positive ionization 
mode of the QTOF LC/MS, there were a total of 
163 significant features for lymphoma and 262 
significant features for myeloma. The negative 
ionization mode which aligned 11829 features 
showed 350 significant features for NHL and 
98 significant features for myeloma. These 
significant m/z features were used to identify 
metabolites for pathway analysis. Manhattan 
plot combines statistical analyses (e.g., P value, 
ANOVA) with the magnitude of change and 
enables visual identification of statistically 

significant data-points (metabolites, etc.) that 
display large-magnitude changes. Multiple 
testing corrections such as FDR adjusts P values 
(q-values) derived from multiple statistical tests 
correct the occurrence of false positives. The 
y-axis of this plot represents the negative log of 
the raw P value that compared the concentration 
of each metabolite in plasma between healthy 
controls and blood cancer patients. The x-axis 
were the m/z values that ranged from 50 to a 
maximum of 1000 to satisfy the condition where 
only compounds which fell into this range could 
be considered. The dashed line on the graph 
showed the FDR adjustment made in the data to 
eliminate false positives, therefore m/z values 
above this line were significantly expressed from 
the ones below this line (Fig.1). 

Fig.1: Manhattan plot of the significant features found in non-Hodgkin’s lymphoma (NHL) patients for A. Positive, B. Negative ionization 
modes, and multiple myeloma patients for C. Positive, and D. Negative ionization modes.
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We performed two-way HCA analysis on the 
significant metabolite features to identify the 
essential metabolites for sample clustering. In 
this study, HCA used the 163 (positive) and 350 
(negative) significant features from NHL and 
262 (positive) and 98 (negative) from myeloma 
patients which were the key components 
that separated cancer patients and healthy 
individuals. In HCA, the significant features 
are grouped depending on their correlation 
(e.g, signal intensities). HCA determines the 
similarity measures using Euclidean distance 
and Pearson linear correlation The panels on top 
of the figures have shown two distinguishable 
main clusters for both positive and negative 

ionization modes-green for NHL and myeloma 
patients, while control samples were grouped 
in the red panels (Fig.2). The clear separation 
of the significant features between control and 
case samples could be regarded as an indication 
of the differences in expression of metabolites 
in malignant patients compared to healthy 
individuals. The colors of the metabolites 
represented their relative concentration which 
was based on the signal intensities from LC-MS 
data. This indicated that the concentration of 
the metabolites from blood cancer patients was 
significantly higher or lower than the control 
samples, depending on which color spectrum 
they fell under.

Fig.2: Hierarchical clustering analysis (HCA) of non-Hodgkin’s lymphoma (NHL) patients for A. Positive, B. Negative ionization modes, and 
multiple myeloma patients for C. Positive, and D. Negative ionization modes.
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Identification of significant metabolites in blood 
cancer patients

Metlin generates matrices that contain information 
such as mass, adduct, name, chemical abstracts 
service (CAS) number, and KEGG numbers 
of the metabolites specifically used for further 
processing of data in pathway analysis. These 
metabolites have been filtered at a confidence limit 
of 30 ppm which told the database to list down all 
possible metabolites that fall up to ± 0.003% m/z 
difference from the indicated mass. Metlin used 
the mass of the significant m/z features and select 
adducts to match metabolites according to their 
similarities to these specifications. In this study, 
we used the adducts [M+H]+and [M+Na]+for 
positively ionized metabolites as well as [M+Cl]-
and [M-H]-for negatively ionized metabolites due 
to their abundance in the human body. For NHL 
patients, we identified 300 metabolites from the 
163 significant features in the positive ionization 
mode and 832 metabolites from 350 features in 
the negative ionization mode. Meanwhile, 305 
metabolites out of 262 significant features from 
the positive mode and 190 metabolites from 98 
significant features from the negative mode of 
myeloma patients were identified. Table 2 lists 
some of these compounds.

The identities of these metabolites are questionable 
and need further verification. The most common way 
to validate a metabolite’s identity and concentration 
in the samples is through quantitative analysis by 
NMR and MS. This study, however, has not validated 
the significant metabolites in NHL and myeloma 
patients. This can be a focus by future studies that 
use metabolomics of hematologic malignancies. The 

complete annotated metabolites for both ionization 
modes of myeloma and NHL patients are shown 
in the Supporting Information. Their roles on the 
metabolism of humans will be discussed in the next 
section.

Human metabolic pathway map analysis using 
the Kyoto Encyclopedia of Genes and Genomes 

The metabolites with KEGG numbers were used 
in the metabolic pathway analysis of blood cancer 
patients. The resulting KEGG numbers from both 
the ionization modes were combined and analyzed 
together for an easier analysis. We observed a 
total of 90 compound hits that belonged to 100 
metabolic pathways from NHL patients and 36 
compound hits from 114 pathways in myeloma 
patients. Figure 3 shows the 10 pathways with the 
most affected metabolites. The values per partition 
of the pie graph show the percentage of the number 
of metabolites affected per pathway to the total 
number of metabolites in the 10 pathways listed. 
The complete list of metabolic pathways affected 
can be found in the Supporting Information. Aside 
from those listed in Figure 3, other pathways such 
as oxidative phosphorylation, choline metabolism 
in cancer, and bile secretion pathways with 
metabolites like NADH, phosphatidylcholine, 
and glutathione were observed to be affected 
in NHL patients. Meanwhile, for myeloma 
patients we have observed that fumarate, 
uridine, and S-adenosylmethioninamine (Fig.4) 
which are under the oxidative phosphorylation 
pathway, pyrimidine metabolism, and cysteine 
and methionine metabolism were some of the 
metabolites potentially affected by the disease.

Table 2: A number of identified metabolites from cancer patients annotated by using the Metlin database

Cancer Ionization Molid Inputmass Adduct Mass dppm Name Formula CAS KEGG

Lymphoma Positive 134 181.0710326 [M+H]+ 180.0634 2 D-Galactose C6H12O6 59-23-4 C00124

Negative 193 339.2059151 [M+Cl]- 304.2402 10 Arachidonic 
Acid (peroxide 
free)

C20H32O2 506-32-1 C00219

Myeloma Positive 60264 856.7260108 [M+H]+ 855.7081 12 Phosphatidyl-
choline

C50H98NO7P C00157

Negative 66524 141.0463524 [M+Cl]- 106.0783 9 p-Xylene C8H10 106-42-3 C06756

CAS; Chemical abstracts service and KEGG; Kyoto Encyclopedia of Genes and Genomes.
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Fig.3: Ten pathways with the highest numbers of affected metabolites for non-Hodgkin’s lymphoma (NHL) and myeloma patients from 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis.
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Fig.4: Metabolic pathway map of humans that show some of the affected metabolites in non-Hodgkin’s lymphoma (NHL) and myeloma 
patients.
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Discussion
In this study, we observed a clear separation 

of metabolites between healthy controls and 
patients with myeloma and NHL, which indicated 
a difference in metabolites expressed in patients 
with these cancers. We identified these significant 
features by the untargeted metabolomics approach 
in order to assess differences in multiple metabolic 
pathways affected in NHL and myeloma patients. 
Lodi et al. (31) used the same approach to evaluate 
metabolic profiles of patients with myeloma 
during diagnosis, post-treatment remission, 
and disease progression by proton NMR-based 
metabolite analysis. Similarly, Yoo et al. (32) 
identified hypoxanthine from urine samples as 
a marker for NHL by untargeted low-mass ion 
profiling. Meanwhile, this study has analyzed 
plasma samples from healthy individuals as well 
as those from myeloma and NHL patients to 
check for diverse pathways which are affected but 
may be neglected in myeloma and NHL studies. 
Although identification of potential biomarkers 
for these diseases is important, recognizing which 
pathways are generally affected is equally essential 
in understanding the effects of these malignancies 
on human metabolism.

The pathways and those in the Supporting 
Information were pathways where the significantly 
expressed metabolites in myeloma and NHL 
patients belonged. Oxidative phosphorylation 
modulation by mitochondria is believed to regulate 
tumor growth in cancer (33). NADH-linked 
decreased oxidation of substrates, overproduction 
of reactive oxygen species, and altered control 
of apoptosis are a number of metabolic changes 
presented by many cancer cells (34). Abnormal 
choline metabolism is a new prospect to study 
metabolism related to oncogenesis and tumor 
progression. Clinically, cancers that develop 
in different organs demonstrate elevated total 
choline levels. Magnetic resonance studies of 
choline phospholipid metabolism in cancer have 
confirmed that these choline compounds are 
elevated in cancers (35, 36). Meanwhile the role of 
the bile secretion pathway in blood malignancies, 
which has a known function of absorption and 
metabolism of fats as well as fat-soluble vitamins 
in the small intestine, has yet to be explored. 
One of the metabolites affected in this pathway, 
glutathione, is a major cellular antioxidant crucial 

for maintaining the balance between oxidation 
and reduction. It is also important in cellular 
detoxification and immune response (37). In 
contrast, some studies have found that elevated 
levels of glutathione in tumors may increase 
resistance to chemotherapy and radiotherapy (38, 
39). Although this pathway and metabolites are 
associated with different cancers, they have not 
been fully explored in the diagnosis, management, 
or treatment of NHL. In multiple myeloma 
patients, fumarate is an intermediate in the citric 
acid cycle used by cells to produce energy in 
the form of ATP. Elevated intracellular fumarate 
together with inhibition of fumarate hydratase 
(FH) coincides with hypoxia-inducible factor 
(HIF) upregulation, thus permitting tumorigenesis 
(40). This phenomenon has been seen in renal 
cancer cells (41). Another seemingly important 
metabolite in cancer under the pyrimidine 
metabolism is uridine. This natural pyrimidine 
nucleoside is one of the most promising biological 
modulators for anticancer drug (e.g., 5-fluoroacil) 
efficacy to solid tumors which has been seen in 
preclinical models (42, 43). To date, an association 
between S-adenosylmethioninamine and cancer 
has not been determined. Its decarboxylated 
form, S-adenosylmethionine, is increasingly 
recognized for its role in hepatocyte growth, 
death, and malignant degeneration (44). Similar to 
the pathways and metabolites found in lymphoma 
patients, these metabolites have not been related 
to myeloma as far as the authors’ knowledge is 
concerned.

Pathway analysis is important in understanding 
metabolic transitions following cellular 
transformation. This can lead to new insights into 
the biological basis of transformation and may 
generate novel targets for therapy and cancer 
diagnosis (45). Perroud et al. (46) utilized pathway 
analysis using proteomics and metabolic profiling to 
discover highly significant pathways for renal cell 
carcinoma. The group also featured the metabolic 
changes related to kidney cancer and its applicability 
for optimal therapy. Despite the benefits of this 
technology, to the best of our knowledge, pathway 
analysis has not been used for studies of both 
myeloma and NHL patients. KEGG pathway 
analysis also shows affected metabolites using the 
metabolic pathway map where the metabolites are 
highlighted (e.g., black) in small nodes. The colored 
nodes represent various metabolic pathways in 
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different organisms which is easily differentiated 
by color intensity-dark-colored pathways are from 
the chosen organism while light-colored pathways 
belong to other organisms. The researchers believe 
that the metabolites and pathways discussed in this 
study will enable future studies in blood cancers 
to investigate new possibilities in improving 
current knowledge of these malignancies for 
better management and treatment options. The 
application of HRM, not only in this study, but also 
in other cancer researches paves the way to a further 
understanding of its possible interactions which may 
eventually lead to improved diagnosis or may aid in 
the development of a more effective treatment.

Conclusion
This study discussed the metabolic profiling 

of two blood malignancies-NHL and myeloma. 
We used LC-based metabolomics to identify all 
possible affected pathways and metabolites from 
the plasma samples of healthy and cancer patients. 
There was a clear metabolic difference observed 
from the NHL and myeloma samples compared 
to the healthy controls. Affected pathways, 
like oxidative phosphorylation and choline 
metabolism, were those linked in tumor growth 
and progression. The pathways and metabolites 
discussed, despite their indirect association with 
these hematologic malignancies, might open 
various possibilities in management and treatment 
options for the patients. Regardless of the small 
number of samples due to the lack of NHL and 
myeloma patients, the samples used in this study 
were analyzed in replicates and have undergone 
strict statistical analyses for a more reliable data 
set. Future studies that involve more patient 
samples are recommended to verify and strengthen 
the findings in this study.
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