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Abstract
Epigenetic and genetic alterations are two mechanisms participating in leukemia, which can 
inactivate genes involved in leukemia pathogenesis or progression. The purpose of this review 
was to introduce various inactivated genes and evaluate their possible role in leukemia patho-
genesis and prognosis. By searching the mesh words “Gene, Silencing AND Leukemia” in 
PubMed website, relevant English articles dealt with human subjects as of 2000 were included 
in this study. Gene inactivation in leukemia is largely mediated by promoter’s hypermethylation 
of gene involving in cellular functions such as cell cycle, apoptosis, and gene transcription. 
Inactivated genes, such as ASPP1, TP53, IKZF1 and P15, may correlate with poor progno-
sis in acute lymphoid leukemia (ALL), chronic lymphoid leukemia (CLL), chronic myelogenous 
leukemia (CML) and acute myeloid leukemia (AML), respectively. Gene inactivation may play 
a considerable role in leukemia pathogenesis and prognosis, which can be considered as 
complementary diagnostic tests to differentiate different leukemia types, determine leukemia 
prognosis, and also detect response to therapy. In general, this review showed some genes 
inactivated only in leukemia (with differences between B-ALL, T-ALL, CLL, AML and CML). 
These differences could be of interest as an additional tool to better categorize leukemia types. 
Furthermore; based on inactivated genes, a diverse classification of Leukemias could repre-
sent a powerful method to address a targeted therapy of the patients, in order to minimize side 
effects of conventional therapies and to enhance new drug strategies.    
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Introduction
Epigenetic and genetic alterations are two 

mechanisms in leukemia (1). Several factors, such 
as chromosomal translocations as well as genetic or 
epigenetic alterations, are involved in leukemogenesis 
(2, 3). Abnormal methylation of DNA and histone 
modifications are important mechanisms in tumor 
suppressor silencing, contributing  to leukemogenesis 
along with genetic alterations (1). The role of 
epigenetic alterations in the development of 
hematological malignancies has been identified 
in recent years (4, 5). It was reported that many 
mechanisms leading to the gene activation or 
inactivation contribute to the tumor formation (6). 
On the other hand; drug resistance, including tyrosine 
kinase inhibitor resistance, has become a continuous 
clinical challenge; thus, the detection of abnormal 

genes specifically involved in leukemogenesis 
could be considered as prognostic biomarkers in 
disease classification serving  as a new therapeutic 
protocol in leukemia (7, 8). The purpose of this 
review was to introduce various genes inactivated 
in several leukemia types, and also evaluate their 
role in leukemia pathogenesis and prognosis.

Significance of inactivated genes in lymphoid 
leukemia

Inactivation of genes plays an important role in the 
pathogenesis and prognosis of lymphoid leukemia. 
Epigenetic mechanisms are the most prevalent 
inactivation ones in lymphoid leukemia and involve 
the genes implicated in several cellular mechanisms, 
including gene expression and transcription, cell-
cycle regulation and apoptosis (Table 1) (9, 10).
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Table 1: Inactivated genes in leukemia types

Gene Chro. Function Mechanism of 
inactivation

Leukemia Type of 
sample

Ref

CDKN2A(p16INK4a) 9p21 Tumor suppressor/G1-S 
cell-cycle control

Deletion ALL BM (8, 11-13)

MTAP 9p21 Major role in polyamine 
metabolism

Deletion ALL BM (14)

CDKN2A(p14ARF) 9p21 Cell-cycle control/Apoptosis 
regulation/Tumor 
suppressor

Deletion ALL BM (14)

P21CIP1/WAF1/SDI1 6p21.2 Cyclin-dependent kinase 
inhibitor

Promoter
methylation

ALL BM (3)

BIM 2q13  Pro-apoptotic BH3-only 
bcl2 family member/Tumor 
suppressor in B cell

Promoter 
methylation

ALL BM (15)

Hsa-miR-124a 8p23.1 Post-transcriptional regula-
tion of gene expression

Promoter 
methylation

ALL BM (16)

DKK-3 11p15.1 Wnt antagonist/Tumor
suppressor

Promoter 
methylation

ALL BM (17)

WIF1 12q14.3 Wnt antagonist Promoter
methylation

ALL BM (18)

ASPP1 14q32-33 P53 costimulator Promoter
methylation

ALL BM/HL-
60, Jurkat, 
K-562 cell 
line

(19)

EPHB4 7q22 Receptor tyrosine kinase/
Tumor suppressor

Promoter
methylation

ALL BM (20)

EFNB2 13q33 Ephrin Promoter
methylation

ALL BM (20)

EFNA5 5q21 Ephrin Promoter
methylation

ALL BM (20)

DBC1 / BRINP1 9q33 Cell cycle arrest in G1/
Tumor suppressor  

Promoter
methylation

ALL BM (21)

Deletion NALM-20/
TOM-1 cell 
line

TES 7q31.2 Tumor suppressor/Cell-
matrix adhesions/Cell-cell 
contacts and to actin stress 
fibers

Promoter
methylation 

ALL BM (22)

FHIT 3p14.2 Histidine triad protein (HIT) 
family/Tumor suppressor

Promoter 
methylation

MLL PB/BM (23)

SLC5A8 12q23.1 Tumor suppressor/Trans-
porter of endogenous 
monocarboxylates 
 

Promoter 
methylation

MLL-PTD PB/BM (24)

NOTCH3 19p13.2-
p13.1

Notch-Hes pathway Promoter 
methylation

B-ALL BM (25)
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Table 1: Continued

Gene Chro. Function Mechanism of 
inactivation

Leukemia Type of 
sample

Ref

HES4 1p36.33 Transcriptional repressor Promoter 
methylation

B-ALL BM (25)

HES5 1p36.32 Transcriptional repressor Promoter meth-
ylation/Histone 
deacetylation

B-ALL BM (25)

BMP6 6p24-p23 Regulators of cell prolif-
eration, differentiation and 
apoptosis

Promoter 
methylation

ATL PB/BM (26)

PTPN2 18p11.3-
p11.2

Cell growth/Negative 
regulator of the JAK-STAT 
pathway

Deletion T-ALL BM (27)

RIZ1 1p36.21 Tumor suppressor/A 
member of a nuclear 
histone/Protein 
methyltransferase 
superfamily

Promoter 
methylation

T-ALL BM (28)

CDKN2B/ P15INK4B 9p21 G1-S cell-cycle control/
Tumor suppressor

Deletion ALL BM (8, 12-
14, 29, 
30)Promoter 

methylation
AML

NDRG2 14q11.2 Tumor suppressor/
Cellular stress

- AML HL60/U937/
NB4/HT93 
cell line

(31, 32)

Deletion/Promoter 
methylation

ATLL PB

CHD5 1p36.31 Chromatin remodeling
Gene transcription

Promoter 
methylation

ALL/AM/
CML

BM (33)

KLF2 19p13.11 Zinc-finger transcription 
factors

- T cell 
leukemia

Jurkat cell 
line

(34)

AML BM

SHP1 12p13 JAK-STAT signaling 
pathway inhibitor/Tumor 
suppressor  

Promoter 
methylation

ATL /
AML/ 
ALL/CML

BM/PB (35)

IKZF1 7p12.2 Transcription factor Deletion/Mutation B-ALL PB/BM (36)

CML (blast 
crisis)

E-cadherin (CDH1) 16q22.1  Maintenance of the epithe-
lial phenotype/Mediated by 
a Ca11-dependent/Homo-
typic cell-cell adhesion

Promoter 
methylation

CLL/AML/
ALL

PB/BM (37)

sFRP1 8p12-11.1 Wnt antagonist Promoter 
methylation

CML/ALL BM (38, 39)

CLL PB

ATM 11q22-q23 Apoptosis/Cell cycle 
checkpoint

Mutation of the 
coding region 

CLL Tumor (40)
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Table 1: Continued

Gene Chro. Function Mechanism of 
inactivation

Leukemia Type of 
sample

Ref

TP53 17p13.1  Cell cycle arrest/Apoptosis Mutation of the 
coding region

CLL Tumor (40)

miR-15a 13q14.2 Post-transcriptional regulation of 
gene expression

Histone 
deacetylation

CLL - (41)

miR-16 13q14 Post-transcriptional regulation of 
gene expression

Histone 
deacetylation

CLL - (41)

miR-29b 7q32.3, 
1q32.2

Post-transcriptional regulation of 
gene expression

Unknown CLL - (41)

PTPRO 12p13.3-
p13.2; 
12p13-p12

Receptor-type protein tyrosine 
phosphatases/Tumor suppressor

Promoter 
methylation

CLL PB (9)

KLF4 9q31.2 Zinc-finger transcription factors Promoter 
methylation

CLL PB (42)

APAF-1 12q23 Initiates apoptosis - B-CLL PB (43)

NUR77 12q13 Tumor suppressor/
Transcriptional activator

HDAC inhibition AML PB/BM (44)

NOR1 9q22 Tumor suppressor/
Transcriptional activator

HDAC inhibition AML PB/BM (44)

NDRG1 8q24.3 Cellular stress/Cell growth/
Differentiation

- AML HL60/U937/
NB4/HT93 
cell line

(32)

KLF5 13q22.1 Zinc-finger transcription factors Promoter
methylation

AML BM (34)

FANCA 16q24.3 Fanconi anemia, complementa-
tion group A

Deletions AML BM (45)

C/EBPδ 8p11.2-
p11.1

Transcription factor/
Tumor suppressor

Promoter 
methylation

AML PB (46, 47)

SOCS-1 16p13.13 Suppressor of cytokine signaling/
Tumor suppressor

Promoter 
methylation

AML BM (48)

CAV1 7q31.1 Major structural component of 
caveolae

- AML HL60 cell 
line

(49)

NF1 17q11.2 Tumor suppressor Nf1 deficiency AML B106, B114 
and B117 
cell line

(50)

IRF-4 6p25-p23 Transcription factor Promoter 
methylation

CML/ 
AML/ 
CMMoL

PB (51)

 CDH13 16q24 Cell recognition/Adhesion/
Tumor suppressor

Promoter 
methylation

CML PB (52)

SOCS-3 17q25.3 Suppressor of cytokine signaling Promoter 
methylation

CML K562 cell 
line

(53)

SARI/ 
BATF2

11q13.1 Tumor suppressor - CML PB (54)

PU.1 11p11.2 Transcription factor Unknown CML BM (55)

ALL; Acute lymphoid leukemia, CLL; Chronic lymphoid leukemia, CML; Chronic myelogenous leukemia, AML; Acute myeloid leukemia, 
and BM; Bone marrow.
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Method of obtaining map of genes. Genes 
of living organisms are usually represented 
by a long nucleotides molecule that makes up 
DNA. Bioinformatics is an integrated scientific 
discipline which addressing the use of computers 
to search or illustrate the information about genes. 
Here, we illustrate these principles using a new 
visual analytics tool named MapView (https://
www.ncbi.nlm.nih.gov/mapview/) to facilitate 
the representation of a previously published set of 
gene data in human with leukemia (Fig.1) (56).

Regulators of gene transcription
Human chromodomain helicase DNA binding 

protein 5 (CHD5), Krüppel-like factor 2 (KLF), 
Retinoblastoma protein-interacting zinc finger 
1 (RIZ), and IKAROS family zinc finger 1 
(IKZF1) are among the genes that regulates gene 
transcription, and are inactivated in acute lymphoid 
leukemia (ALL). CHD5, one of the nine members 
of the CHD family, is characterized  by the unique 
combination of chromatin organizing modulator, 
helicase and DNA-binding domains (57). This gene 
acts as a chromatin remodeling protein. Expression 
of a tumor-suppressive network, including P16 
and P19, encoding by cyclin-dependent kinase 
inhibitor 2A locus, facilitates suppression, while 
loss of CHD5 increases proliferation (58). The 
expression of this gene is generally reduced in 
human leukemia cell lines. CHD5 mRNA and 
protein expression are significantly lower in ALL 
patients in comparison with normal mononuclear 
cells (NMCs); thus, CHD5 can be used as a 
biomarker panel for hematopoietic malignancies 
even for therapeutic approaches (Figs.1A, 2) 
(33). KLF2, a member of KLF family of zinc-
finger transcription factors, is another inactivated 
gene in ALL. KLF2 inhibits Jurkat leukemia cell 
growth via upregulation of cyclin-dependent 
kinase inhibitor. This factor has transactivation 
and inhibitory domains, both of which are involved 
in inhibition of cell proliferation; however, the 
transactivation domain is involved in the inhibition 
of DNA synthesis. P21WAF1/CIP1 induction 
is a KLF2 mechanism for cell cycle arrest and 
suppression of T-cell leukemia growth. This is a 
P53-independent induction and can be considered 
as a therapeutic target for leukemia since it is 
effective upon Jurkat leukemia with mutated P53 
(Table 1) (59).

The reduced RIZ1 expression is associated with 

leukemogenesis in adult ALL. RIZ1 is the protein 
encoded by RIZ gene, having a positive regulatory 
(PR) domain and transcriptional repression function. 
RIZ1 promoter is methylated; thus its expression is 
reduced in T-ALL. RIZ1 is a T-ALL specific tumor 
suppressor gene. Further studies are needed to 
elucidate the inactivation mode of RIZ1 (28).

Deletion or mutation of IKAROS (IKZF1) is 
associated with minimal residual disease in BCR-
ABL1-positive ALL, a poor outcome as well as 
high relapse rate in B-cell-progenitor ALL (60). 
IKAROS is a transcription factor playing an 
essential role in lymphopoiesis (61). IKZF1 gene 
aberrations are associated with a poor outcome in 
B-ALL and have a high risk of relapse in leukemia 
(60). Deletion of  IKZF1 has been reported in 83.7% 
of BCR-ABL1-positive ALL cases. Aberrant 
RAG-mediated recombination is responsible for 
the deletions (36). In general, detection of IKZF1 
alterations upon diagnosis shows a high risk of 
treatment failure (60).

Post-transcriptional regulators of gene expression
MicroRNAs (miRs) play an important role in the 

pathogenesis and prognosis of leukemia through 
post-transcriptional regulation. MiR-124a is a tumor 
suppressor involved in the pathogenesis of ALL. 
Epigenetic regulation of hsa-miR124a increases 
CDK6 expression, leading to abnormal ALL cell 
proliferation both in vitro and in vivo. CDK6 is an 
oncogene playing a role in cell proliferation and 
differentiation. Hypermethylation of hsa-miR-124a 
is an independent prognostic factor for disease-free 
survival (DFS) as well as overall survival (OS) 
in ALL patients which is associated with a poor 
prognosis (16, 62).

Deletions in chromosome 13 [del (13q14)] 
are among the aberrations observed in chronic 
lymphoid leukemia (CLL) patients, result in 
decreased expression of miR-15a and miR-16. 
MCL-1 and BCL-2 are targets of miR-15a and 
miR-16. Low levels of miR-15a and miR-16 in 
combination with selective loss of miR-29b may 
contribute to the pathobiology of CLL. MiR-29b is 
another miR, which is decreased in CLL. MiR-29b 
acts as a tumor suppressor targeting Mcl-1, SP1, 
DNMT3a, DNMTb, Tcl-1 and Cdk6 in CLL (41). 
The expression of this miR is reduced through an 
unknown mechanism in aggressive CLL and is 
associated with a poor prognosis (63).
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Fig.1: The maps of inactivated genes in leukemia. A. The maps of inactivated genes in lymphoid leukemia. Black genes; Inactivated genes 
in ALL, Red genes; Inactivated genes in CLL, Underlined genes are inactivated in both ALL and CLL and B.  The maps of inactivated genes 
in myeloid leukemia. Black genes; Inactivated genes in AML, Red genes; Inactivated genes in CML, Underlined genes are inactivated in 
both AML and CML.
ALL; Acute lymphoid leukemia, CLL; Chronic lymphoid leukemia, CML; Chronic myelogenous leukemia, and AML; Acute myeloid leukemia. 

A

B
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Cell cycle regulators
Deletions in cyclin-dependent kinase inhibitor 2A 

(CDKN2A) locus is a common mutation in T-ALL; 
so, CDKN2A tumor suppressor locus is disrupted in 
90% of T-ALL cases  (Table 1) (64, 65). CDKN2A is a 
tumor suppressor acting via INK4a/p16 and ARF/p14 
proteins. This tumor suppressor functions upstream 
of retinoblastoma (Rb) gene to control the cell cycle 
arrest (65). Inactivating mutations in CDKN2A locus 
disrupt both Rb and P53 tumor suppressor pathways. 
In addition to CDKN2A, CDKN2B/P15INK4B is 
deleted in a significant fraction of ALL cases but it is 
always associated with CDKN2A deletion (Figs.1A, 
2) (14).

Homozygous deletion of P16, P14, and P15 
is prognostic and affects the OS of adult B-ALL 
patients. However, methylation in the above-
mentioned genes has no impact on survival of these 
patients (13). Moreover, INK4 deletion is associated 
with prognosis in childhood ALL as an independent 
factor (11, 12), so any P16 deletion is a major 
independent risk factor for relapse as well as a major 
independent negative prognostic indicator in pediatric 
ALL (11). Pediatric ALL with INK4 deletion tends to 
relapse approximately one year later (median first-
remission duration approximately 2.1 years versus 
approximately 3 years) but is not associated with 
event-free survival (pEFS) (12).

CDKI p21CIP1/WAF1/SDI1 is another CDKI. 
Hypermethylation of P21 gene is a factor of poor 
prognosis in both childhood and adult ALL and 
patients with hypermethylation of P21 show poorer 
DFS compared to those with normal methylation (3). 
Therefore, INK4 deletion and P21 methylation can 
have important clinical outcomes in ALL patients and 
will help in the selection of treatment and also be the 
basis for new therapeutic approaches.

Gene inactivation is not always associated with 
disease outcome in patients. DBC1 is involved in the 
pathogenesis of ALL despite the lack of a significant 
correlation between DBC1 and relapse rate, mortality, 
DFS, and OS (21). DBC1 is located in the cytoplasm 
and leads to cell cycle arrest in G1 or at least slower 
G1 transition having an antiproliferative effect and 
which leads to apoptosis indirectly (66).

Apoptotic genes
From among the genes involved in apoptosis, 

apoptosis-stimulating protein of P53 (ASPP1), bone 

morphogenetic protein (BMP) 6 and BIM are involved 
in the pathogenesis of ALL. Ataxia telangiectasia 
mutated (ATM), tumor protein P53 (TP53), and 
apoptosis protease-activating factor 1 (APAF-1) play 
a significant role in the pathogenesis of CLL (15, 19, 
43, 67, 68).

ASPP family members, including ASPP1, ASPP2, 
and iASPP are effective upon P53 function. ASPP1 
and ASPP2 activate P53 through induction of pro-
apoptotic genes such as BAX and PIG3 but iASPP 
acts as an activator of P53. ASPP1 methylation and 
inactivation is more frequent in adult ALL and T-ALL 
relative to childhood ALL and B-ALL, respectively; 
hypermethylation does not occur in the ASPP2 
promoter  (Figs.1A, 2) (69). Decreased ASPP1 
expression in leukemic cell lines is associated with 
increased iASPP expression. Therefore, alterations 
of ASPP play an important role in the pathogenesis 
of hematological neoplasms (69, 70). In addition, 
ASPP1 can be considered as a factor of poor prognosis 
since the risk of relapse and mortality is higher in ALL 
patients with methylated ASPP1 in comparison with 
those having unmethylated ASPP1 (19).

BMP6 is a member of tumor growth factor (TGF)-β 
superfamily of multifunctional cytokines (71). This 
gene is highly methylated in ATL and to a lower 
extent in ALL and CLL. The degree of methylation 
is higher in aggressive types of ATL, and chronic 
ATL cases with BMP-6 promoter methylation are 
more aggressive clinically. The BMP-6 promoter 
methylation may thus be a new biomarker to predict 
the progression to acute stages in chronic ATL patients 
however further research is needed in this field (26).

BIM is a pro-apoptotic factor that plays an important 
role in development and homeostasis of the lymphoid 
system and acts as a tumor suppressor in B-cells 
(72). In general, the balance between pro- and anti-
apoptotic molecules is disrupted in many leukemic 
cells, leading to resistance to apoptosis, such that the 
imbalance between pro- and anti-apoptotic proteins 
of BCL-2 family results in the development of ALL 
and drug resistance (73, 74). The absence of BIM 
causes malignant B-cell resistance to glucocorticoid 
BIM (72). Thus BIM expression is lower in high-
risk childhood ALL and is associated with slow early 
response to a standard 4-drug combination (15).

Aberrant P53 activation is associated with poor 
prognosis in CLL patients. This disorder may occur 
directly as a result of TP53 gene mutation or indirectly 
via ATM inactivation (40). ATM is the central 
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component of signal transduction pathway (75). CLL 
patients with complete loss of ATM function have 
a poor response to cytotoxic chemotherapeutics in 
vitro due to biallelic ATM defects and are associated 
with poorer clinical outcome (67). Respectively 
Dysfunctional mutation in TP53 and ATM accounts 
for 80% of 17p- and 36% of 11q- cases (76, 77). 
These mutations are associated with poor responses 
to purine analogue-containing chemoimmunotherapy 
and shorter survival (67). Although a loss of APAF-
1 alone is not effective upon disease prognosis, 
it has prognostic relevance in the small subset 
of P53-mutated B-CLL patients. APAF-1 is the 
transcriptional target of P53 and plays a role in linking 
the mitochondrial apoptotic pathway to caspase 
cascade (Fig.2) (43). 

Wnt pathway antagonists
Wnt signaling plays a pivotal role in the 

proliferation of thymocytes and pro-B cells. Also 

Inactivated Genes in Leukemia

Wnt proteins are thus growth factors for progenitor 
cells of both B- and T-cell lineages (78). Wnt signals 
are essential for survival and growth of lymphocyte 
progenitors. Furthermore; impaired Wnt signaling 
can be a mechanism of lymphoid leukemogenesis 
(Fig.2) (18). Dickkopf (DKK3) gene, negatively 
modulating Wnt7A signaling, is highly silenced in 
ALL (17). Generally, silencing of Wnt antagonists 
(DKK3, WIF1, sFRPs and DACT1) by promoter 
methylation leads to activation of canonical Wnt/β-
catenin signaling pathway in ALL, which plays a role 
in the pathogenesis of the disease (18). If silencing 
of DKK-3 expression occurs in early stages of ALL 
pathogenesis, it plays an important role in disease 
outcome. DKK-3 methylation and silencing are an 
independent prognostic factor in predicting DFS in 
ALL (17). Overally, hypermethylation and silencing 
of Wnt inhibitors in ALL is associated with poor 
prognosis (18). Hypermethylation of sFRP1 has 
also been reported in CLL patients (79).

Fig.2: Inactivated genes in lymphoid leukemia. Black genes; Inactivated genes in ALL, Red genes; Inactivated genes in CLL, Underlined 
genes are inactivated in both ALL and CLL. APAF; Apoptosis protease-activating factor 1, ATM; Ataxia telangiectasia mutated, 
BMP6; Bone morphogenetic protein-6, CDK; Cyclin-dependent kinase, CHD5; Chromodomain helicase DNA binding protein 5, Dkk3; 
Dickkopf, EFN; Ephrin, IKZF1; IKAROS family zinc finger 1, JAK; Janus kinase, KLF; Krüppel-like factor, MDM2; Mouse double minute 2 
homolog, miR; Micro RNA, MTAP; S-methyl-5'-thioadenosine phosphorylase, mTOR; Mammalian target of rapamycin, NDRG; N-myc 
downstream regulated gene, PTEN; Phosphatase and tensin homolog, PTPN2; Protein tyrosine phosphatase non-receptor type 2, PI3K; 
Phosphoinositide 3-kinase, SFRP1; Secreted frizzled-related protein 1, SHP; SH2-containing phosphates, STAT; Signal transducers and 
activators of transcription, TP53; Tumor protein P53, and WIF1; WNT inhibitory factor 1.
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Suppressors of JAK/STAT pathway
SH2-containing phosphatase (SHP1) is a non-

receptor protein tyrosine phosphatase (PTP) expressed 
at high levels in hematopoietic cells. SHP1 inhibits 
growth-promoting signaling such as Janus kinase/
signal transducers and activators of transcription 
(JAK/STAT) (Fig.2). Hypermethylation and silencing 
of SHP1 gene are observed in a wide range of 
hematopoietic malignancies (35, 80). SHP1 gene 
is basically methylated in blast crisis of adult T-cell 
leukemia-lymphoma (ATLL) from carrier status 
to acute or lymphoma type ATLL as well as during 
progression to aggressive ATLL (81). Therefore, 
evaluation of SHP1 as a prognosis factor in ATLL is 
recommended.

Notch-HES Pathway
Notch receptor signaling pathway is involved 

in many cellular functions such as hematopoietic 
stem cell self-renewal, cell lineage commitment, 
maturation and differentiation (82, 83). Also Notch 
signaling regulates T- and B-cell lineage commitment 
(84). It increases T-cell proliferation in neoplastic 
transformation of T lymphoid progenitors which 
results in malignancy (85). Overexpression of the 
active forms of Notch receptors (ICN1-4) or Notch 
downstream target gene hairy and enhancer of split-1 
(HES1) in human B-cell leukemia/lymphoma can 
lead to apoptosis (86). Notch pathway genes Notch3 
and HES5 are hypermethylated in human B-ALL 
cases but the molecular mechanisms of oncogenic 
and tumor suppressive activity of Notch are not well 
known (25).

Regulators of PI3K/Akt pathway
N-MYC downstream regulated gene (NDRG)-

2 is a PTEN-binding protein recruiting protein 
phosphatase 2A (PP2A) to PTEN. NDRG2 interacts 
with PTEN and activates its phosphorylation (31). 
Genetic and epigenetic inactivation of NDRG2 
in ATLL cells increases PTEN phosphorylation 
and reduces its activity, following by increased 
activity of phosphoinositide 3-kinase (PI3K)-AKT 
pathway and enhanced proliferation (Fig.2) (31, 
87). Increased activation of PI3K-AKT plays an 
important role in the development of leukemia 
(87). Therefore, NDRG2 can be considered as a 
prognostic factor in future studies.

Cell adhesion
Expression of E-cadherin (Cadherin1:CDH1) 

gene, which is commonly methylated in ALL and 
CLL leukemia cells, is not detectable in lymphoid 
blasts (37, 88). CDH1 is involved in homotypic 
cell-cell adhesion. Inhibition of Wnt pathway is 
another function of CDH1. Lack of E-cadherin 
expression is one reason for increased activity 
of Wnt signaling in CLL cells (37). TESTIN 
(TES) is a component of focal adhesion complex 
involved in cell-matrix adhesions and cell-cell 
contacts. Silencing of TES may contribute to ALL 
pathogenesis through adhesion and interference 
with normal interactions between progenitors and 
stroma since it increases the mobility of immature 
progenitors, leading to premature release from 
bone marrow (BM) niches. TES gene expression 
is decreased to a higher extent in B-ALL relative to 
MLL-translocation ALL and T-ALL (22). Hence, 
it can be used to distinguish between lymphoid 
leukemia types.

Significance of inactivated genes in myeloid 
leukemia

Genetic defects and also  hypermethylation, can 
contribute to initiation and maintenance of AML 
(89). Hypermethylation of tumor suppressor genes 
is a commonly deregulated mechanism in acute 
myeloid leukemia (AML) and chronic myelogenous 
leukemia (CML) (54, 90). CAV-1, NUR77, NOR1, 
P15INK4B as well as the suppressor of activator 
protein-1 regulated by interferon (SARI), SHP1 
and CDH13, are respectively among these tumor 
suppressors in AML and CML (Figs.1B, 3) (30, 
35, 44, 49, 52, 54, 80).

Regulators of gene transcription

KLF5, CCAAT/enhancer binding protein (C/EBP) 
δ, NUR77, NOR1, PU.1, IKZF1, Interferon regulatory 
factor (IRF) 4 and CHD5 are among regulators of 
gene transcription in myeloid leukemia (33, 34, 44, 
46, 51, 55, 60). KLF5 regulates the genes involved 
in regulation of cell growth, apoptosis, migration, and 
differentiation. The expression of this factor which is 
particularly increased in granulocyte lineagewhich 
plays a special role in granulocytic development (90, 
91). Decreased KLF5 expression causes reduced 
granulocytic differentiation in response to granulocyte-
colony stimulating factor (G-CSF) signaling which is 
an essential factor for differentiation of APL cells in 
response to all-trans retinoic acid (ATRA) (90). The 
transcriptional target of KLF5 is cell cycle inhibitor 
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of P15INK4b, which is usually inactive in AML because 
of  promoter hypermethylation (92). The function 
of oncogenic fusion proteins like PML-RARα may 
result in decreased KLF5 expression since these 
fusion proteins directly reduce the expression of 
tumor suppressors such as P21 (CDKN1A) (93). 
Hypermethylation detection at KLF5 locus can 
help identifying the appropriate patients for specific 
therapy because demethylating agents such as 5-aza-
2-deoxycytidine (Decitabine), reactivating KLF5 
expression, have been successful in some clinical 
trials in AML (Table 1) (90, 94). Among C/EBP 
transcription factors expressed during the development 
of myeloid lineage, C/EBPδ is extensively silenced 
in AML. Although promoter of C/EBPδ is the major 
methylated gene in AML, there is no correlation 
between disease stage and its methylation, leading to 
silencing (65).

NUR77 (NR4A1) and NOR1 (NR4A3) are 
transcription factors involved in different cellular 
and physiological functions, including apoptosis, 
mitosis, inflammation, and differentiation (95-
98). Also NUR77 regulates the induction of 
FAS-L, TRAIL, and pro-opiomelanocortin in 
lymphocytes (99). NUR 77 and Nor1 transcripts 
are decreasing significantly in leukemic blasts 
of AML patients in comparison with normal BM 
cells (44). Therefore, silencing of NUR77 and 
NOR1 plays an important role in the pathogenesis 
of AML. Intensive silencing of NUR77 and Nor1 
occur not only in bulk leukemia cells but also in 
leukemia stem cells (LSCs) (Figs.1B, 3) (99). 
PU.1 is another transcription factor involved in 
myeloid development, controlling the expression 
of genes important for fate determination of both 
myeloid and lymphoid lineages. The role of PU.1 
in leukemic processes is related to its expression 
level, associating with AML if decreased. The 
PU.1 level is reduced in CML patients upon 
diagnosis but it will be increased after treatment 
with interferon-α or imatinib and return to normal 
hematopoiesis. Thus, it may be used as a factor to 
determine response to treatment (55). IRF4 belongs 
to IRF family with an important role in the regulation 
of several genes, including IFNs, interleukins, MHC 
class I/II, apoptosis, and differentiation/maturation 
(51). IRF4 is also a transcriptional regulator using as 
a useful marker in monitoring but not the screening 
of response to IFN-alpha in CML. The expression of 
this gene is decreased in CML, AML, and chronic 
myelomonocytic leukemia (CMMoL) patients, and 

increased expression of IRF4 is associated with good 
response to IFN-alpha therapy (51).

Regulators of the cell cycle
P15INK4b, decreased in APL patients, inhibits 

cyclin D-CDK4/6 and results in cell cycle arrest in 
G1 (Fig.3). In addition, patients with methylated 
P15 have a higher relapse risk and lower DSF, 
which is suggestive of poor prognosis (52). CAV-
1, the major structural component of caveolae, is a 
protein that plays an essential role in tumorigenesis. 
The CAV-1 expression is reduced in HL-60 cell 
line. In fact, overexpression of CAV-1 inhibits HL-
60 cell proliferation, induces apoptosis, arrests the 
cell cycle in G1 phase, and inhibits the activation of 
PI3K/AKT/mTOR signaling pathway (49).

Cellular stress
NDRG1 is a protein induced as a result of cellular 

stress. The NDRG1/2 expression increases during 
cell differentiation. NDRG1 increases neutrophil 
differentiation via increasing the expression of key 
transcription factors of myeloid series, including C/
EBPδ and PU.1. Decreased expression of NDRG1 
is associated with reduced cell differentiation in 
NB4 cells. In general, the NDRG1/2 expression 
is reduced in primary AML in which the cells are 
blocked in early myeloid differentiation stages (32).

Suppressors of JAK/STAT pathway
Suppressors of cytokine signaling (SOCS 1 and 3) 

are among the genes inactivated in myeloid leukemia. 
SOCS is a negative regulator of JAK/STAT signaling. 
This signaling regulates biological activities of the 
cell, including growth and differentiation (Fig.3) 
(53). SOCS1 is the most potent inhibitor of JAK in 
SOCS family acting as a tumor suppressor. SOCS1 
is inactivated in AML patients because of promoter 
methylation (48). SOCS-3, which specifically targets 
STAT3, is inactivated in K562-R cells, is resulting 
in activation of STAT3 signaling and resistance 
mechanisms. Hypermethylation of SOCS3 may cause 
resistance to tyrosine kinase inhibitors in break point 
cluster-Abelson (BCR-ABL) positive CML because 
overactivity of STAT3 leads to unchecked cell 
proliferation (53). SHP1, one of the inhibitor of JAK/
STAT pathway, is subject to decreased expression in 
advanced-phase CML patients relative to the chronic 
phase. Therefore, the loss of SHP-1 function may play 
a key role in progression to blast crisis in CML (100).



 CELL JOURNAL(Yakhteh), Vol 19, Suppl 1, Spring 2017 19

Heidari et al.

Fig.3: Inactivated genes in myeloid leukemia. Black genes; Inactivated genes in AML, Red genes; Inactivated genes in CML, underlined 
genes are inactivated in both AML and CML. CDH; Cadherin, CDK; Cyclin-dependent kinase, C/EBPδ; CCAAT/enhancer binding protein, 
delta, CHD5; Chromodomain helicase DNA binding protein 5, FANCA; Fanconi anemia, complementation group A, IKZF1; IKAROS family 
zinc finger 1, IRF-4; Interferon regulatory factor 4, JAK; Janus kinase, KLF; Krüppel-like factor, MDM2; Mouse double minute 2 homolog, 
NDRG; N-myc downstream regulated gene, SFRP1; Secreted frizzled-related protein 1, SOCS; Suppressors of cytokine signalling, SHP; 
SH2-containing phosphates, STAT; Signal transducers and activators of transcription, and TP53; Tumor protein P53.

Cell adhesion

CDH13, a member of cadherin family involved 
in cell adhesion, is subject to decreased expression 
in CML patients. CDH13 methylation is also 
associated with shorter median progression-free 
survival time in CML patients and predicts poor 
cytogenetic response to interferon α treatment (52).

Discussion

Predictive modeling is a powerful implement to 
test a hypothesis, confirm an experiment, and also 
mimic a dynamics of complex system (101). 
Along with clear mechanistic understanding of 
dynamical systems, predictive models perform 
the simulation of a complex system in a predictive 
manner and relatively fast-time with no enormous 
costs of laboratory experiments. Especially in 
oncology, predictive models can be established by 
using available clinical or experimental data (102-
104), as well as tumor progression and potential 
treatment options that can be assessed prior to 

clinical intervention (105-109). Walter et al. (110) 
assessed the effect of genetic profiling on prediction 
of therapeutic resistance and survival in adult acute 
myeloid leukemia and showed that genetic profiling 
rises the accuracy of multivariable models predicting 
therapeutic resistance in adults with newly diagnosed 
AML. Bou Samra et al. (111) built a 20-gene expression 
(GE)-based risk score that used to predictive overall 
survival and improving risk classification of patients 
with CLL. Also it showed that such predictive model 
represents a powerful tool for risk stratification and 
outcome prediction, which could be used to guide 
clinical and therapeutic decisions prospectively. 
Inactivated genes are involved in different cellular 
functions such as cell cycle, apoptosis and particularly 
gene transcription (Table 1) (15, 18, 19). Inactivation 
of RIZ1, BMP6, and SHP1 is specific for T-ALL and 
IKZF1 inactivation is for B-ALL. TES methylation 
is more pronounced in B-ALL relative to MLL and 
T-ALL while silencing of FHIT is a feature of MLL 
(23, 26, 28, 35). Therefore, the mentioned genes can 
be used as additional diagnostic tests to differentiate 
leukemia types.
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Inactivation of genes is involved in leukemia 
prognosis that suggests poor prognosis of leukemia 
(Table 2). Inactivation of BMP6 and SHP1 from 
among the genes playing a role in ALL prognoses 
predicting the aggressive type of T-ALL (26, 28). 
Inactivation of miR-124a, Wnt inhibitors and P21 
has been associated with poor prognosis of ALL 
(3, 16, 18, 62). In addition, inactive IKZF1 and 
ASPP1 are also associated with increased risk of 
relapse. CDKN2A and CDKN2B inactivation are 

associated with poorer OS of adult B- ALL but 
not with pEFS of childhood ALL (19, 60). In CLL 
patients, inactivation of miR-29b and APAF-1 (only 
in P53-mutated group) is a sign of poor prognosis 
(41, 43). SHP-1 methylation is associated with 
progression to blast crisis, and CHD13 inactivation 
is associated with shorter median progression-
free survival time in CML patients (35, 52). In 
AML patients, inactive P15 is indicative of poor 
prognosis (30).

Table 2: The effect of inactivated genes on prognosis of the leukemia

ReferenceLeukemiaEffect on prognosis of leukemiaInactivated gene

(60)ALLHigh risk of relapse in leukemia 
High risk of treatment failure

IKZF1

(16, 62)ALLAn independent prognostic factor for DFS and OS 
Is associated with a poor prognosis

miR-124a

(18)ALLIs associated with poor prognosisWnt inhibitors*

(8, 11-13)ALLIs associated with poorer OS of adult B- ALL
High risk of relapse in leukemia
No correlation with pEFS of childhood ALL

CDKN2A 

(8, 11-13)ALLIs associated with poorer OS of adult B- ALL 
High risk of relapse in leukemia
No correlation with pEFS of childhood ALL

CDKN2B

(21)ALLNo correlation with relapse rate, mortality, DFS and OSDBC1

(19)ALLIs associated with a high risk of relapse and mortality ASPP1

(3)ALLIs associated with a poor prognosis 
Is associated with poorer DFS

P21

(26)Chronic ATLMay thus be a new biomarker to predict the progression 
to acute stages 

BMP-6

(63)CLLIs associated with a poor prognosismiR-29b

(43)B-CLLA predictor of poor prognosis APAF-1 and P53

(46)AMLNo correlation with disease stage C/EBPδ

(30)APLHigher relapse risk and lower DFS
Poor prognosis

P15

(100)CMLIt may play a key role in progression to blast crisis SHP-1

(52)CMLIs associated with shorter median progression-free survival time CDH13

ALL; Acute lymphoid leukemia, AML; Acute myeloid leukemia, APAF; Apoptosis protease-activating factor 1, ASPP; Apoptosis-stimulating of p53 
protein, BMP6; Bone morphogenetic protein-6, CDK; Cyclin dependent kinase, C/EBPδ; CCAAT/enhancer binding protein, delta, CLL; Chronic 
lymphoid leukemia, CML; Chronic myelogenous leukemia, DFS; Disease-free survival, IKZF1; IKAROS family zinc finger 1, miR; Micro RNA, OS; 
Overall survival, pEFS; probability of event-free survival, SHP; SH2-containing phosphates, and *;  Wnt inhibitors: DKK3, WIF1, sFRPs and DACT1.
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Gene inactivation is not always prognostic so 
the inactivation of C/EBPδ in AML, as well as 
DBC1 inactivation, has no effect upon patient’s 
outcome (46, 112). Prediction of response to 
treatment and screening for specific treatments 
is another important aspect of the inactivated 
genes (Table 3). Decreased KLF5 can be used 
as a marker to identify AML patients for specific 
treatment with 5-aza-2-deoxycytidine (34). The 
consequence of neurofibromin 1 (NF1) gene 
inactivation in AML that confers Cytarabine 
(Ara-C) resistance through MAPK and mTOR 
pathways was reported formerly (50). In CML 
patients, CHD13 reduction predicts poor response 
to IFNα, and also increased expression of IRF-4 
predicts a good response to this treatment (51, 

52). In these patients, increased expression of 
PU.1 indicates a good response to treatment with 
interferon-α or imatinib and return to normal 
hematopoiesis (55). These genes can also be 
used as a complementary test to predict patients’ 
response to treatment. All or most of the papers 
that was mentioned to explain the inactivation of 
some genes in leukemia are original ones where 
primary Leukemia specimens were obtained by 
either freshly purified blood or frozen purified 
blast cells derived from leukemia patients at the 
moment of the Leukemia diagnosis. Therefore, 
it is conceivable that the inactivation/activation 
state of various genes could represent a clinical 
feature to take into account at least for the disease 
classification.

Table 3: The effect of inactivated genes on treatment of leukemia

ReferenceLeukemiaThe effect of inactivated genes on treatmentGene

(15)Childhood ALLSlow early response to standard 4-drug combination BIM

(43, 67)CLLPoor responses to purine analogueTP53 and ATM

(90)AMLReduced granulocytic differentiation in response to granulocyte-
colony stimulating factor (G-CSF) 

KLF5

(50)AMLLeading to Ara-C resistanceNF1

(55)CMLThe expression of PU.1 is increased after treatment with interferon-α 
or imatinib and return to normal hematopoiesis. 

PU.1

(51)CMLIncreased expression of IRF4 is associated with good response to IFN-
alpha therapy 

IRF4

(53)CML (Ph+)May cause resistance to tyrosine kinase inhibitors SOCS3

(52)CMLPredicts poor cytogenetic response to IFN-alpha treatmentCDH13

ALL; Acute lymphoid leukemia, AML; Acute myeloid leukemia, ATM; Ataxia telangiectasia mutated, CLL; Chronic lymphoid leukemia, 
CML; Chronic myelogenous leukemia, IRF; Interferon regulatory factor, KLF; Kruppel like factors, SHP; SH2-containing phosphates, 
and SOCS; Suppressor of cytokine signaling proteins.
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Conclusion
Inactivation of genes, which is mainly mediated 

by hypermethylation of gene promoters, plays 
an important role in pathogenesis and prognosis 
of leukemia. Generally, this review showed 
some genes inactivated only in leukemia (with 
differences between B-ALL, T-ALL, CLL, AML 
and CML). These differences could be considered 
as an additional tool to better categorize leukemia 
types. Furthermore, a diverse classification of 
Leukemias based on inactivated genes could 
represent complementary diagnostic tests to 
differentiate leukemia types, determine prognosis 
and a powerful method to address a targeted 
therapy of the patients, in order to minimize side 
effects of conventional therapies and to enhance 
new drug strategies.
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