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Abstract
Objective: Electrical low frequency stimulation (LFS) is a new therapeutic method that moderates hyperexcitability during 
epileptic states. Seizure occurrence is accompanied by some changes in action potential (AP) features. In this study, we 
investigated the inhibitory action of LFS on epileptiform activity (EA) induced-changes in AP features in hippocampal CA1 
pyramidal neurons.  
Materials and Methods: In this experimental study, we induced EA in hippocampal slices by increasing the extracellular 
potassium (K+) concentration to 12 mM. LFS (1 Hz) was applied to the Schaffer collaterals at different pulse numbers 
(600 and 900) at the beginning of the EA. Changes in AP features recorded by whole-cell patch clamp recording were 
compared using phase plot analysis.    
Results: Induction of EA depolarized membrane potential, decreased peak amplitude, as well as the maximum rise and 
decay slopes of APs. Administration of 1 Hz LFS at the beginning of EA prevented the above mentioned changes in AP 
features. This suppressive effect of LFS depended on the LFS pulse number, such that application of 900 pulses of LFS 
had a stronger recovery effect on AP features that changed during EA compared to 600 pulses of LFS. The constructed 
phase plots of APs revealed that LFS at 900 pulses significantly decreased the changes in resting membrane potential 
(RMP), peak amplitude, and maximum rise and decay slopes that appeared during EA.                    
Conclusion: Increasing the numbers of LFS pulses can magnify its inhibitory effects on EA-induced changes in AP features.    
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Introduction
Electrical low frequency stimulation (LFS), an 

important pattern of deep brain stimulations, has been 
evaluated as a potential therapeutic strategy to moderate 
hyperexcitability that appears during neurological 
disorders such as epilepsy (1-4). High frequency 
stimulation is used in a therapeutic manner; however, LFS 
has a lower risk of damage to brain structures, relative 
safety, and reversibility (1, 3). This method, introduced 
as a new manner to treat uncontrolled epilepsy, is used 
in both experimental animal models (3-6) and epileptic 
patients (7-9). The inhibitory action of LFS on kindled 
seizures (5, 10) as well as epileptiform activity (EA) in 
brain slices (11) has been shown in previous studies. 

Seizure occurrence is accompanied by changes in 
neural excitability. Different factors, including the 
features of action potential (AP), can be used as an 
index of neural excitability. APs, as the main factor for 
transferring information in the nervous system, are crucial 
components that regulate brain activity (12). Therefore, 
the exact timing and features of APs are decisive for 
dynamic encoding and processing of information in the 
neuronal network (13, 14). 

Previous studies on kindled animals (15, 16) and in vitro 
isolated rodent brains (17) showed that seizures could 
induce alterations in AP features. Research showed that 
the augmented activity during seizures was accompanied 
by decrements in amplitude, depolarizing and repolarizing 
slopes, and increments in frequency and half-width of the 
APs. In addition, the resting membrane potential (RMP) 
and threshold of APs shifted to more depolarized values 
in the epileptic states (15, 17).

It would be beneficial to assess the effect of LPS on 
AP features generated during epilepsy considering its 
potential for treating epilepsy. In order to explore the effect 
of LFS on AP features and considering the important role 
of hippocampus in the epilepsy (18), EA was induced in 
the hippocampal brain slices via increasing extracellular 
potassium (K+) concentrations. The high-K+ model is a 
proper model for induction of EA in brain slices because 
in vivo studies show elevated levels of [K+]o to 12 mM in 
the hippocampus during the seizure state. Any impairment 
in glial cells which leads to increments in [K+]o can induce 
seizures. In addition, it has been shown that increasing 
extracellular K+ concentrations, as a well-known model 
in epilepsy researches, results in prolonged neuronal 
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depolarization and large ionic changes in hippocampal 
compartments (19-22). In this study, we try to determine 
the effect of 1 Hz LFS applied to the Schaffer collaterals 
on the EA-induced changes in AP features.

Materials and Methods 
Experimental animals

In this experimental study, we housed 4-6 week old 
male Wistar rats under standard laboratory conditions 
of 22-25˚C, 12 hour light/dark cycle, and free access to 
food and water. All experimental procedures and the care 
of animals were in accordance with the guidelines of the 
Institutional Animal Ethics Committee at the Faculty of 
Medical Sciences, Tarbiat Modares University, and were 
completely in line with the NIH Guide for the Care and 
Use of Laboratory Animals.

Preparation of brain slices and whole-cell recording
In this experiment, whole cell current clamp recordings 

were performed on the hippocampal CA1 pyramidal 
neurons of rats. The rat brains were quickly removed and 
placed in a cold cutting artificial cerebrospinal solution 
(ACSF) that contained (in mM): 238 sucrose, 2.5 KCl, 
0.5 CaCl2, 2 MgSO4, 1 NaH2PO4, 26.2 NaHCO3 and 11 
D-glucose adjusted to a pH=7.3-7.4 with 95% oxygen, 
5% carbon dioxide, and an osmolarity to 290-300 mOsm. 
Horizontal slices (400 μm) of the right hippocampus that 
contained the entorhinal cortex due to its involvement in 
seizure generation (23) were prepared using a vibratome 
(VT1200S, Leica, Nussloch, Germany). The prepared 
slices were transferred to a Gibbs chamber that contained 
32-35oC standard ACSF (sACSF) composed of (in mM): 
125 NaCl, 3 KCl, 2 CaCl2, 2 MgSO4, 1.25 NaH2PO4, 
25 NaHCO3, and 10 D-glucose at a pH of 7.3-7.4 and 
osmolarity of 290-300 mOsm for 1 hour. Then, prior to 
transfer to a submerged recording chamber, we maintained 
the slices at room temperature for at least 30 minutes. 
The submerged recording chamber was continuously 
superfused with sACSF at a rate of 2 ml/minutes. This 
chamber was located on the stage of an upright microscope 
(Axioskop 2 FS MOT, Carl Zeiss, Germany) equipped 
with an infrared CCD camera (IR-1000, MTI, USA) to 
visualize hippocampal CA1 pyramidal neurons. 

Intracellular activity was recorded from the CA1 
pyramidal cells using borosilicate glass pipettes (1.5 
mm O.D. and 0.86 mm I.D., Sutter, USA) filled with 
an intracellular solution that contained the following (in 
mM): 120 K-gluconate, 6 NaCl, 6 CaCl2, 2 MgCl2, 2 Mg 
ATP, 0.5 Na GTP, 12 phosphocreatine, 5 EGTA, and 10 
HEPES with an equilibrated pH=7.3-7.4 and osmolarity 
of 290-300 mOsm.

The tip resistance of the micropipettes pulled via a 
microelectrode puller (P-97, Sutter Instrument, USA) was 
4-6 MΩ. The electrode capacitance and series resistance 
were compensated. The cells that had changes in series 
resistance of more than 25% were rejected from data 

collection. Signals were acquired using a multiclamp 
700B amplifier and digitized with a Digidata 1440 A/D 
converter (Molecular Devices, CA, USA). All recordings 
were acquired at 10 kHz and digitized at 2 kHz. Data were 
saved in a PC and analyzed offline using pCLAMP 10 
software (Molecular Devices, CA, USA). 

EA was induced by applying a high potassium ACSF 
(high-K+ ACSF) that contained (in mM): 116 NaCl, 12 
KCl, 1 NaH2PO4, 25 NaHCO3, 10 D-glucose, 2 CaCl2, 
2 MgSO4 with a pH=7.3-7.4 and osmolarity to 290-300 
mOsm. At first, we recorded the intracellular activity 
of the cells in the presence of sACSF for 10 minutes, 
after which the slices were exposed to high-K+ ACSF 
for 20 minutes. Spontaneous firing of hippocampal CA1 
pyramidal neurons following application of high-K+ 

ACSF significantly increased while these neurons had no 
or very low spontaneous firing in sACSF. Spontaneous 
firing in the range of 0.2 Hz to 100 Hz that appeared 5.64 
± 0.42 minutes after superfusion of high-K+ ACSF were 
persistent for at least 20 minutes after high-K+ ACSF 
washout from the recording chamber (Fig.1). 

Fig.1: Representative whole cell patch clamp recordings of spontaneous 
firing of a CA1 pyramidal neuron induced by a 20 minutes perfusion of 
high potassium artificial cerebrospinal solution (high-K+ ACSF). Numbers 
indicate the time points in which the sample voltage traces are shown at 
an expanded time scale.

LFS was applied to the Schaffer collaterals as 600 
(LFS600) and/or 900 (LFS900) square wave pulses of 0.1 
mseconds at a frequency of 1 Hz. LFS was delivered at 
the beginning of the EA at an intensity of 1.5 times more 
than the intensity sufficient to elicit an evoked EPSP of at 
least 5 mV amplitude.

We compared four experimental groups in this study. 
The high-K+ ACSF (HK) group had slices that were 
superfused by high-K+ ACSF and no electrical stimulation. 
The LFS600 group received 600 pulses of LFS delivered 
to the Schaffer collaterals at the beginning of the EA. In 
the LFS900 group, the slices received 900 pulses of LFS 
at the beginning of the EA. In the LFS groups, LFS (either 
600 or 900 pulses) was applied to the slices without 
high-K+ ASCF. 
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Phase plots were constructed to characterize and compare 
the effect of the increased extracellular K+ concentration 
on the features of AP recorded from hippocampal CA1 
pyramidal neurons. In phase plot analysis, the time 
derivative of the membrane potential (dV/dt) was plotted 
versus the membrane potential (Fig.2).

In all experimental groups, we evaluated changes in 
RMP, peak amplitude of the APs, and maximum rise 
and decay slopes of the APs for 5 minutes in 3 phases: 
immediately after EA initiation, at the middle of EA, and 
after high-K+ ACSF washout with sACSF.  We did not 
observe any AP after 5 minutes of washout in most of 
the recorded slices. Therefore, we considered the first 5 
minutes immediately after the washout for measuring and 
evaluating the changes in AP (Fig.1).

Fig.2: Phase plot analysis of action potentials (APs). Top: AP recorded from 
a CA1 pyramidal neuron. Bottom: Phase plot that shows different parts of 
the AP presented at top. 

Statistical analysis
All obtained results were analyzed via pCLAMP (version 10, 

Molecular Devices, CA, USA) and MATLAB (MathWorks) 
software. Results are presented as means ± SEM. Different 
experimental groups were statistically compared using 
one-way or two-way repeated measures ANOVA followed 
by Tukey’s post-hoc test using GraphPad Prism software 
(version 6.01, CA, USA).  P<0.05 was considered statistically 
significant. In each experiment, n represented the numbers of 
cells and/or slices prepared from at least 3 rats.

Results 
We observed that approximately 5 minutes after 

administration of high-K+ ACSF the CA1 pyramidal cells 
spontaneously fired the APs. Following a paroxysmal 
depolarization shift, EA initiated with several bursts of 
APs followed by the appearance of uneven APs of various 
amplitudes and multiple spikes that included doublets, 
triplets, and quadruplets (Fig.1). The AP parameters in 
the second and third spikes of the doublets and triplets 
changed such that there was a significant reduction in 
Vmax, and the rise and decay slopes (Fig.3).

Fig.3: Different patterns of action potentials (APs) of hippocampal CA1 
pyramidal neurons that appeared during epileptiform activity (EA) by high 
potassium artificial cerebrospinal solution (high-K+ ACSF). Left: Sample 
recordings of various AP patterns. Right: Relative phase plots of each 
voltage sample that illustrates the changes in AP features during EA. 
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CA1 pyramidal cells had a mean RMP of -69.3 ± 1.79 
mV. Increasing the extracellular potassium concentration 
([K]o=12 mM) significantly depolarized the RMP to -56.8 
± 1.78 mV at the beginning of the EA and changed it to 
the most depolarized value of -43.2 ± 2.75 mV during EA 
(one-way ANOVA, F(2,27)=36.84, P<0.001, n=8). Changes in 
RMP were normalized according to the baseline. Figure 4 
shows that the application of 900 pulses of LFS significantly 
prevented HK induced depolarization of RMP after high-K+ 
ACSF washout. This parameter significantly increased from 
60% in the HK group to 75% of baseline in the LFS group 
when measured after the washout (P<0.01, n=7). 

Two-way repeated measure ANOVA demonstrated a 
significant interaction of different time points of measurements 
and experimental groups for RMP (F(4,34)=3.57, P<0.05). 
Although there was a significant difference in RMP among 
the different time points (F(2,34)=3.8, P<0.05), this parameter 
showed no significant difference between the experimental 
groups (F(2,17)=1.87, P=0.18).

The maximum rise slope of the APs at the beginning 
of EA was 115.7 ± 7.01 mV/mseconds. This parameter 
significantly decreased to 69.24 ± 9.21 mV/mseconds 
when measured in the middle of the EA (P<0.001, n=8) 
and to 45.52 ± 5.72 mV/mseconds after high-K+ ACSF 
washout (P<0.001, n=8) in the HK group (Fig.4). 

Two-way ANOVA showed no significant interaction 
of the different time points and experimental groups. 
However, there was a significant difference for maximum 
rise slope between the HK and LFSs groups (F(2,18)=5.1, 
P<0.05) as well as different time points of measurements 
(F(2,36)=35.88, P<0.001). Administration of 900 pulses 
of LFS at the beginning of EA significantly increased 
maximum rise slope during EA when this parameter was 
measured at the middle of EA (from 69.24 ± 9.21 mV/
mseconds to 106.2 ± 5.97 mV/mseconds, P<0.05, n=7) 
and when this parameter was measured after high-K+ 
ACSF washout (from 45.52 ± 5.72 mV/mseconds to 
89.03 ± 7.62 mV/mseconds, P<0.01, n=7) (Fig.4). 

Fig.4: Effect of different pulse numbers of 1 Hz low frequency stimulation (LFS) applied at the beginning of epileptiform activity (EA) on action potentials 
(APs). A. Phase plot analysis that illustrates the effect of LFS on AP parameters evaluated immediately after initiation of EA, during the middle of EA, 
and after high potassium artificial cerebrospinal solution (high-K+ ACSF) washout and B. Effect of LFS on APs, including resting membrane potential peak 
amplitude, maximum rise slope, and maximum decay slope measured at three time points during EA.

A

B
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The APs of CA1 pyramidal neurons generated after the 
application of high-K+ ACSF had a mean peak amplitude 
of 81.26 ± 2.43 mV at the beginning of EA. This parameter 
significantly attenuated to 66.24 ± 4.36 mV when 
measured at the middle of EA (P<0.01, n=8) and 52.66 
± 2.11 mV after high-K+ ACSF washout (P<0.001, n=8, 
Fig.4). Two-way repeated measures ANOVA revealed 
significant interactions between different experimental 
groups and time points for the peak amplitude of APs 
(F(4,36)=4.24, P<0.01). This parameter also showed 
significant differences between time points (F(2,36)=20.75, 
P<0.001) and experimental groups (F(2,18)=5.58, P<0.05). 
Application of 600 pulses of LFS had no significant effect 
on HK induced changes in peak amplitude. However, 900 
pulses of LFS significantly increased peak amplitude of 
APs to 73.73 ± 3.46 mV when measured after high-K+ 
ACSF washout (P<0.001, n=7, Fig.4). 

The maximum decay slope value of the APs that 
appeared immediately after EA initiation was -26.77 ± 
1.53 mV/mseconds. This parameter decreased during EA 
to -16.3 ± 2.17 mV/mseconds when assessed after high-K+ 
ACSF washout (P<0.01, n=8, Fig.4). Although there was 
no significant interaction of different time points and 
experimental groups (F(4,36)=0.99, P=0.42), this parameter 
showed significant differences between various time 
points (F(2,36)=17.15, P<0.001) and experimental groups 
(F(2,18)=4.49, P<0.05). 

Application of LFS at 900 pulses significantly 
augmented the maximum decay slope of APs to -34.39 
± 1.26 mV at the middle of EA and to -28.2 ± 2.5 after 
high-K+ washout (P<0.05, n=7, Fig.4).

Application of LFS alone did not have any significant 
effect on the measured electrophysiological parameters.

Discussion 
In the present study we described the features of AP in 

CA1 pyramidal neurons during 3 phases of high-K+ ACSF 
induced EA. Phase plot analysis revealed that application 
of LFS at the beginning of EA reduced the changes in AP 
features that appeared during EA.

Our results agreed with other studies where LFS applied 
at 1 Hz had an inhibitory effect on EA in acute brain slices 
(11, 24, 25). Our data also showed that higher numbers 
of LFS pulses (900 vs. 600) had a stronger suppressive 
effect on the AP properties generated during EA. These 
results agreed with previous studies where consecutive 
application of 1 Hz LFS for 15 minutes was necessary 
to inhibit seizures in kindled rats (10) and in exerting its 
antiepileptogenic effect (26).

An association existed between administration of 
high-K+ ACSF and the generation of APs with lower peak 
amplitude, and slower rise and decay slopes. Voltage-
gated Na+ and K+ channels are the main determinants 
of AP generation and neuronal excitability in the 
central nervous system (27-30). An abnormality in their 
functions causes hyperexcitability and occurrence of 

seizure activity (20, 31-34). Na+ channels are responsible 
for the rising phase of APs. The decay phase of APs is 
mediated through fast activating A-type K+ channels as 
well as delayed rectifier K+ channels (13, 35). Elevation of 
extracellular K+ concentrations decrease the driving force 
of outward K+ currents behind AP repolarization (17). 
Subsequently, the slower decay slope and longer duration 
of APs is observed following reduction of outward K+ 
currents. Reduction of the outward K+ currents results in 
a depolarized RMP trough that affects the currents which 
regulate RMP. Our results have indicated that EA led to 
progressive membrane depolarization. Depolarized RMP 
can inactivate fast Na+ channels that are responsible for 
the rising slope and peak amplitude of APs. Inactivation 
of Na+ channels leads to attenuation of Na+ ion driving 
force into the cell which results in slower rise slope and 
reduced amplitude of APs during EA.

Our findings revealed that application of 900 pulses of 1 
Hz LFS at the beginning of EA could significantly return 
RMP to 75% of its baseline value and prevented the AP 
amplitude decrement. LFS also attenuated changes in the 
rising and decay slopes of APs generated during EA. These 
findings might suggest that LFS exerted its inhibitory 
effects on the hyperexcitability during EA by affecting the 
kinetics of voltage gated Na+ and K+ channels. 

AP generation can be affected by the synaptic excitation-
inhibition ratio in neuronal circuits. An imbalance in the 
excitation-inhibition ratio is linked to seizure activity 
(36). Some studies have shown that overstimulation of 
glutamatergic and attenuation of GABAergic synaptic 
transmissions can lead to neuronal hyperexcitability in 
animals (37) and brain slices (38). It has been reported that 
the decrease in frequency of spontaneous and miniature 
inhibitory post synaptic currents (IPSCs) in hippocampal 
CA1 area of epileptic rats led to a three-fold increase in 
the excitation-inhibition ratio and consequence two-fold 
increase in AP frequency (37). Therefore, changes in 
synaptic transmission, which could affect the generation 
of AP, might be considered as a possible mechanism for 
the inhibitory action of LFS on EA and changes of AP 
features during EA. 

Administration of LFS at the beginning of EA reduced 
the EA-induced changes in AP properties. This effect was 
augmented by increasing the number of LFS pulses from 600 
to 900. In addition, phase plot analysis is a suitable method to 
evaluate neuronal excitability during EA.  
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