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Abstract
Objective: This study aimed to isolate and culture SADS cells, investigate their neurogenic capacity and evaluate their 
application for nerve tissue engineering. 
Materials and Methods: In this experimental study, SADS cells were isolated from human adipose tissue.  After 7-day 
treatment of SADS cells with insulin, indomethacin and isobutylmethylxanthine, neurogenic differentiation of SADS cells was 
investigated. During this study, Poly (ε-caprolactone) (PCL) and PCL/gelatin nanofibrous scaffolds were fabricated using 
electrospinning and subsequently nanofibrous scaffolds were coated with platelet-rich plasma (PRP). SADS cells were also 
seeded on nanofibrous scaffolds and neurogentic differentiation of these cells on nanofibers was also evaluated. Effect of PRP 
on proliferation and differentiation of SADS cells on scaffolds was also studied. 
Results: Our results showed that after 7-day treatment of SADS cells with insulin, indomethacin and 
isobutylmethylxanthine, SADS cells expressed markers characteristic of neural cells such as nestin and neuron specific 
nuclear protein (NEUN) (as early neuronal markers) as well as microtubule-associated protein 2 (MAP2) and neuronal 
microtubule-associated (TAU) (as mature neuronal markers) while mature astrocyte maker (GFAP) was not expressed. 
MTT assay and SEM results showed that incorporation of gelatin and PRP into the structure of nanofibrous scaffolds 
has a significant positive influence on the bioactivity of scaffolds. Our results also showed neurogentic differentiation 
of SADS cells on scaffolds.                    
Conclusion: Our results demonstrated that SADS cells have potential to differentiate into early and mature progenitor 
neurons, in vitro. PCL/gelatin/PRP was found to be a promising substrate for proliferation of SADS cells and differentiation 
of these cells into neural cells which make these scaffolds a candidate for further in vivo experiments and suggest their 
application for nerve tissue engineering.           
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Introduction
So far, the only way to replace disease or injury-induced 

loss of neural tissue has been through cell transplantation. 
Neural tissue engineering is continuously been applied as a 
new choice for nervous system repair and regeneration and is 
composed of a biomaterial-based substrate that incorporates 
cells and biochemical cues (1-4).

Neural progenitor cells are the important and vital 
components of any strategy that is employed to replace 
neural tissue. Long-term neural integration, regeneration and 
renovation require a successive supply of neural progenitor 

cells to be able to differentiate into neurons and glial cells (5). 
Mesenchymal stem cells (MSCs) are found in virtually all 
organs of the body and have self-renewal ability and multi-
lineage capacity to differentiate into different tissue cells such 
as bone, cartilage, muscle, adipocytes and neural progenitors 
(6, 7). 

Bone marrow-derived MSCs were find first, and considered 
the primary source of MSCs for clinical use. Subsequently, 
MSCs were isolated from various other sources such as adipose 
tissue, serving as one of the alternatives to bone marrow as it 
is safer and easier to use as compared to bone marrow-derived 
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MSCs and share many biological characteristics (7).  
Recently, interest has rapidly grown in the developmental 

plasticity and therapeutic potential of these cells (8-11). 
Previous studies showed that the human scalp tissue contains 
multipotent stem cells with the capacity to differentiate along 
mesodermal and ectodermal lineages (12). Adipose tissue 
of scalp originates from neural crest and previous studies 
demonstrated that stem cells with neural crest origin can 
better differentiate to neural linage. In this regard, Shih et al. 
(12) showed ectodermal neurogenic differentiation potential 
of stem cells available in scalp tissue. 

Tissue engineering treatments, using scaffolds and living 
cells exploit new advancements in understanding of the 
developmental and cell biology that controls and directs cell 
function with the eventual aim of human tissue regeneration 
and repair (13). The cells which especially in current years, 
have been used in tissue engineering are stromal stem 
cells and a wide range of biomaterials has been used for 
fabrication of scaffolds. It is expected that scaffolds mimic 
the architecture of extracellular matrix (ECM) as much as 
possible and provide appropriate microenvironment for cell 
growth and differentiation.

Recently, nanofibrous scaffolds with the ability to mimic 
the native ECM along with their high surface-to-volume 
ratio, interconnected pores and high porosity have attracted 
much interest in tissue engineering (14, 15). The usage of 
electrospinning, an operationally simple, inexpensive and 
versatile approach has been exponentially increased for 
fabrication of nanofibrous scaffolds and has been used to 
fabricate bio-composite nanofibers scaffolds to provide 
mechanical support and direct the growth of different cells (16-
18). Prabhakarn et al. (18) showed neuronal differentiation of 
human bone marrow derived MSCs on electrospun poly(l-
lactic acid)-co-poly-(ɛ-caprolactone)/Collagen (PLCL/Coll) 
nanofibrous scaffolds.

Poly (ε-caprolactone) (PCL) is a semi crystalline linear 
hydrophobic polymer. Although, the electrospun PCL 
nanofibrous scaffolds mimic the dimension of ECM in 
living tissues, its hydrophobic nature reduces the ability of 
cell adhesion, migration, proliferation and differentiation, 
necessary for tissue differentiation. Our previous study 
showed that incorporation of gelatin into PCL nanofibrous 
scaffolds increases the hydrophilicity of scaffolds leading to 
higher rates of cell attachment and proliferation on resultant 
nanofibrous scaffolds (19).

Moreover, platelet-rich plasma (PRP) is described as 
plasma with the platelet population of >1.0×106 cells/μl that 
contains various growth factors such as trans forming growth 
factor (TGF), platelet-derived growth factor (PDGF), platelets 
derived-epidermal growth factor (PDEGF), platelet-derived 
angiogenesis factor (PDAF), insulin growth factor -1 (IGF-
1) and vascular endothelial growth factor (VEGF). PRP can 
be considered an autologous healing biomaterial and applied 
to accelerate cell proliferation and matrix synthesis in tissue 
engineering. Moreover, its availability, cost-effectiveness, 
wide range of applications, and autologous feature make it 
suitable for several clinical applications (20-24).

The purpose of the present study was to isolate and culture 

scalp adipose-derived MSCs (SADS cells), evaluate their 
neurogenic capacity and also discuss the possibility of 
application of SADS cells in nerve tissue engineering, as a 
preliminary study. During this study, nanofibrous scaffolds 
were coated with PRP to examine the effect of PRP on cell 
proliferation and morphology.

Materials and Methods
Cell isolation and culture

In this experimental study, scalp adipose tissue was obtained 
from healthy volunteers under local anesthesia. Biopsies of 
5×5 mm2 were obtained from healthy scalp, and transferred to 
cell culture laboratory in phosphate-buffered saline solution 
(PBS).

The fragments were washed extensively by sterile PBS at 
least three times. Subcutaneous fat was manually removed 
with eye scissors. The remaining tissue, was again washed 
with PBS, cut into 1×1 mm2 pieces and then cultivated in 
tissue culture medium including DMEM/F12 and modified 
Eagle’s medium (Gibco BRL, Paisley, UK) containing 12% 
fetal bovine serum (FBS, Gibco, UK), 1% streptomycin/
penicillin solution (CM Media, Sigma-Aldrich, USA), and 
incubated in a humidified incubator at 37˚C with 5% CO2 and 
defined as passage 0 (P0). 

Culture media was replaced every 3 days until 80% 
confluency was obtained. Then, cells were split using 0.05% 
trypsin/0.02% EDTA and sub-cultured for more passages. 
This process was repeated until passage 3 and cells were 
used in the present study (all chemicals were obtained from 
Sigma, St. Louis, MO, USA, unless stated otherwise). All 
experimental procedures were approved by the Scientific and 
Ethics Committee of Isfahan University of Medical Science, 
Isfahan, Iran.

Flow cytometry
After passage three of culture, the expression of surface 

markers was evaluated using Monoclonal antibodies 
including CD44, CD90, CD105 and CD45 antibodies (BD/
Pharmingen, San Diego, CA).

The adherent cells were detached, and re-suspended in 
PBS. Aliquots containing 5×105 cells were incubated with 
primary antibodies for 15 minute at 4-8˚C. Finally, the cells 
were analyzed using a FACS Calibur cytometer (Becton 
Dickinson). For each sample, 1×104 events were acquired and 
studied by the CELLQUEST Pro software. All events were 
obtained under similar conditions and cellular debris were 
removed from analysis. Expression of cell surface marker 
was analyzed by isotype control on a histogram plot. 

Neurogenic differentiation
SADS cells were detached using trypsin-EDTA and 

cultured in DMEM/F12 modified Eagle’s medium 
supplemented with 10% FBS, 1% penicillin/streptomycin/
antimycotic, 5 µg/mL insulin, 200 µM indomethacin and 
0.5 mM isobutylmethylxanthine (Sigma-Aldrich, St. Louis). 
This media was labeled as NM hereafter. The media was 
replaced every 3 days with fresh media. Ashjian et al. (25) 

http://en.journals.sid.ir/SearchPaper.aspx?writer=653820
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also used isobutylmethylxanthine, indomethacin, and insulin 
for differentiation of human processed lipoaspirate into early 
neural progenitors.

RNA isolation and quantitative real-time polymerase 
chain reaction

Total RNA was isolated by RNeasy mini kit (Qiagen, USA), 
and treated with RNase free DNase set (Qiagen, USA) to 
eliminate the genomic DNA according to the manufacturer’s 
instructions. The RNA was reverse transcribed using 
RevertAid First Strand cDNA Synthesis Kit (Fermentase, 
USA) with oligo dT primers. The real-time polymerase chain 
reaction (RT-PCR) was carried out using Maxima SYBR 
Green RoxqPCR master mix kit (Fermentase, USA) and 
StepOne Plus™ quantitative Real time PCR detection System 
(Applied Biosystems, USA). PCR reactions were performed 
at a total volume of 20 µl. The PCR amplification conditions 
consisted of 10 minutes at 95˚C followed by 40 cycles of 
denaturation step at 95˚C for 15 seconds and annealing and 
extension for 1 minute at 60˚C. The relative quantification 
(RQ) was calculated as the ratio of the mean value of the target 
gene to the mean value of the reference gene (GAPDH) in 
each sample. The relative amount of PCR products generated 
from each primer set, was determined on the basis of the cycle 
threshold (Ct) value. The RQ was calculated by 2-ΔΔCT. These 
experiments were carried out in triplicate and independently 
repeated at least three times. Same method was applied for 
investigation of cells differentiation on scaffolds.

Preparation of platelet-rich plasma
In this study, PRP was prepared according to method 

describe by Sell et al. (26). Briefly, 40 mL whole blood was 
obtained from Iran blood transfusion organization and added 
to tubes containing acid citrate- dextrose as an anti-coagulant 
(0.163 mL per 1 mL of blood) immediately after being drawn; 
blood was centrifuged at 1500 rpm for 10 minutes to separate 
the plasma containing the platelets from the red blood cells. 
The collected supernatant was centrifuged again at 3000 rpm 
for 10 minutes, and precipitated platelets were collected. The 
platelets were re-suspended in a proper volume of plasma 
to achieve a platelet concentration 8-10 times above the 
physiologic amounts. 

Preparation of nanofibrous scaffolds
The polymer solution of PCL and PCL/gelatin (70:30) 

at concentrations of 11% (w/v) wt% and 6% (w/v) were 
prepared by dissolving PCL and PCL/gelatin in dimethyl 
formamide/methylene chloride (80:20 v/v) and hexafloro-2-
propanol, respectively and then stirred for 24 hours at room 
temperature. The solution was electrospun from a 5 mL 
syringe with a needle diameter of 0.4 mm at a mass flow rate 
of 1 mL/hour. A high voltage was applied to tip of the needle 
attached to the syringe when a fluid jet was ejected. PCL and 
PCL/gelatin nanofibrous scaffolds were also coated with PRP 
by soaking samples in PRP, overnight. 

Before cell seeding, scaffolds were exposed to UV radiation 
for 2 hours, washed 3 times with PBS for 20 minutes each and 
incubated with culture media for 12 hours. PCL, PCL/gelatin, 

PCL/PRP and PCL/gelatin/PRP nanofibrous scaffolds were 
placed in a 24-well plate and SADS cells were further seeded 
on scaffolds at a density of 1×104 cells/well with NM at 37˚C, 
with 5% CO2 and 95% humidity.
In vitro cell culture study

The morphology of SADS cells differentiated to nerve 
cells on PCL, PCL/PRP, PCL/gelatin, PCL/gelatin/PRP was 
observed by SEM. After 7 days of cells seeding, samples 
were fixed using 3% glutaraldehyde (Sigma-Aldrich, St. 
Louis) for 2 hours. Specimens were rinsed with water and 
dehydrated using graded concentrations (50, 70, 90, and 100 
v/v) of ethanol. Subsequently, the samples were treated with 
hexamethyldisilazane (HMDS) (Fluka) and air-dried under a 
fume hood. Finally, the samples were coated with gold for 
the observation of cell morphology. The cell proliferation on 
different substrates was determined using the colorimetric 
MTT assay. After 7 days of cells seeding in 24-well plate, 
cells were washed with PBS and then media were replaced 
with a basal medium containing 0.005% MTT solution. After 
4-hour incubation at 37˚C with 5% CO2, the medium was 
discarded and the precipitated formazan was dissolved in 
dimethyl sulfoxide (DMSO). The plate was incubated for 30 
minutes and aliquots were pipetted in to a 96-well plate. The 
absorbance of each well was detected by a Micro plate reader 
(Hyperion MPR 4, Germany) at the wavelength of 540 nm.

RNA isolation and quantitative real-time RT-PCR were also 
carried out for seeded cells on different scaffolds according to 
the aforementioned method (section 2.4). For RT-PCR, cells 
were seeded on scaffolds at a density of 2×105 cells/well as 
more cells were needed for RT-PCR.

Statistical analysis
All data are presented as mean ± SD. Statistical analysis 

was carried out using single-factor analysis of variance 
(ANOVA). A P<0.05 was considered statistically significant.

Results
Isolation, characterization and differentiation of 
SADS cells

In this study, human scalp adipose stem cells (SADS cells) 
were isolated from human scalp adipose tissue. SADS cells 
similar to processed lipoaspirate (PLA) cells, were expanded 
easily in vitro and exhibited a fibroblast-like morphology.

In order to characterize the SADS cells, cell surface marker 
expression of isolated SADS cells at the third passage was 
analyzed. Flow cytometric analysis showed that human 
SADS cells do not express CD34 and CD45 but express 
CD90 (98.76%), CD44 (66.61%) and CD105 (97.18%) 
revealing adipose tissue nature of these cells (Fig.1).

Human SADS cells were induced to differentiate in 
culture by incubation with NM. As early as day 2 (from 
day 2 to day 7) of neural induction, morphologic changes 
were noted. Specifically, the morphology of SADS cells 
changed from flat, elongated and spindle-shaped cells 
to rounded cells with several branching extensions and 
retractile characteristics (Fig.2).
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Fig.1: Flow cytometric analysis of SADS cells shows that human SADS cells express CD44, CD90 and CD105 but not CD34 and CD45.

Fig.2:  Morphology of cells cultured in NM after 1, 2, 3, 4, 5, 7 days of cell seeding (×40).
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After 10-day treatment of SADS cells with NM, cells 
expressed markers characteristic of neural cells such as 
Nestin (NES) and neuron specific nuclear protein (NEUN) 
(as early neuronal markers), as well as microtubule-
associated protein 2 (MAP2) and neuronal microtubule-
associated (TAU) (as mature neuronal markers) but did 
not express matured astrocyte maker (GFAP) (Fig.3).

Fig.3: Real-time polymerase chain reaction (RT-PCR) analysis of NES, 
NEUN, MAP2, TAU and GFAP expression in undifferentiated and neurally 
induced SADS cells. *; Significance level set at P<0.05.

Morphology and proliferation of SADS cells on 
nanofibrous scaffolds

SEM micrograph of PCL and PCL/gelatin nanofibers 
showed uniform and bead-free nanofibers (Fig.4).  Fiber 
diameter was found to be 431 ± 118 nm and 189 ± 56 nm 
for PCL and PCL/gelatin nanofibers, respectively. PCL and 
PCL/gelatin nanofibers were fabricated and characterized in 
our previous study. More details and information regarding 
characterization of PCL and PCL/gelatin nanofibers (fiber 
diameter distribution, porosity, mechanical properties, and 
biodegradability) were reported in our previous study (19). 

MTT assay was carried out to evaluate the proliferation 
of SADS cells on PCL, PCL/gelatin, PCL/ PRP and PCL/
gelatin/PRP nanofibrous scaffolds after 7 days of cell seeding.  
Incorporation of gelatin into the structure of PCL nanofibrous 
scaffolds significantly enhanced cell proliferation compared 
to PCL nanofibrous scaffolds without gelatin (P<0.05, Fig.4).

Coating of scaffolds with PRP was also found to increase 
cell proliferation whereas the proliferation of cells on PCL/
PRP and PCL/gelatin/PRP scaffolds was found to be higher 
in comparison to PCL and PCL/gelatin alone scaffolds 
(P<0.05). 

Morphology of cells on different scaffolds after 7 days of 
cell seeding revealing good integration of cells and scaffolds 
(Fig.5). SEM results are also consistent with MTT results 
and indicate higher levels of cell spreading and proliferation 
on PCL/gelatin nanofibrous scaffolds compared to PCL 
nanofibrous scaffolds. Moreover more cell spreading and 
proliferation was observed on scaffolds coated with PRP 
compared to those without PRP. 

Expression of NES, NEUN, MAP2, TAU and GFAP on 
different scaffolds revealed differentiation of SADS cells 
to neural cells on nanofibrous scaffolds (Fig.6). However, 

no significant difference was observed in the expression 
of NES, NEUN, MAP2, TAU and GFAP among different 
scaffolds (P>0.05) indicating that substrate does not have any 
significant effect on differentiation of cells.

Fig.4: Morphology of PCL and PCL/gelatin nanofibers. Morphology of A. 
PCL and B. PCL/gelatin nanofibrous scaffolds, and C. MTT results of SADS 
cells seeded on PCL, PCL/gelatin, PCL/PRP and PCL/gelatin/PRP after 7 
days of cell seeding.
*; Significance set at P<0.05, **; Not significant difference (P>0.05), PCL; 
Poly (ε-caprolactone), and PRP; Platelet-rich plasma.

B

A

C
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Fig.5: Morphology of differentiated cells on A. PCL, B. PCL/gel, C. PCL/PRP, and D. PCL/gelatin/PRP after 7 days of cell seeding on scaffold with NM  (×1000).
PCL; Poly (ε-caprolactone) and PRP; Platelet-rich plasma.

Fig.6: Real-time polymerase chain reaction (RT-PCR) analysis of NES, NEUN, MAP2, TAU and GFAP expression in undifferentiated and neurally induced SADS 
cells seeded on PCL, PCL/PRP, PCL/gelatin, PCL/gelatin/PRP. 
*; Significance level set at P<0.05, PCL; Poly (ε-caprolactone), and PRP; Platelet-rich plasma.

A B

C D



Cell J, Vol 20, No 2, Jul-Sep (Summer) 2018 174

Fesharaki et al.

Discussion
In this study, SADS cells were isolated from human 

adipose tissue of scalp; after mincing biopsies, the 
specimens were maintained in DMEM/F12 media 
supplemented with 12% FBS. We also used the media 
containing 10% FBS and did not observe any alteration 
in the morphology of cells (data not shown), while a 
significant increase in proliferation rate and neurogenic 
differentiation capacity were detected following 
utilization of 12% FBS.

Flow cytometric results showed that isolated SADS cells, 
after the third passage were positive for CD44 (66.61%), 
CD90 (98.75%) and CD105 (97%) but did not express 
CD 34 and CD45. Other researchers have shown that bone 
marrow-derived stromal stem cells and adipose-derived 
stem cells (ADSCs) have comparable phenotype (27) and 
it was also reported by Zuk et al. (28) and Gronthos et al. 
(29) that ADSCs and MSCs are phenotypically similar as 
both cell populations possess CD44, CD90 and CD 105 
surface markers of adipose tissue.

Several studies have established the neurogenic 
differentiation potential of ADSCs and MSCs. In other 
words, lots of studies have shown that adipose stem cells 
can differentiate into neural cells in the cell culture media 
(25, 30-32). Despite numerous studies done on ADSCs, 
no study inspected the probable neurogenic potential 
of human SADS cells, to date. Shin et al. (12) showed 
that human SADS cells differentiate into neuronal 
precursors and they suggested that these cells can be used 
as an alternative for neural repairing. To the best of our 
knowledge, it is the first research which focused on human 
SADS cells and demonstrated that they can differentiate 
into neural cells, in vitro. SADS cells are easily obtained, 
simply cultured and effortlessly expanded, in vitro. These 
cells also harvested in a safe manner with minimal risk 
for donors.

Ashjian et al. (25) employed induction protocol by 
using indomethacin, isobutylmethylxanthine, and insulin 
for differentiation of human PLA cells to early neural 
progenitors. In our study, we used the same media. They 
observed that cells cultured in neural induction media had 
an increased expression of NSE and NEUN as early markers 
of neurons but did not express mature astrocyte marker 
(GFAP), MAP2 or TAU as mature neuronal markers. But, 
in this research, we observed that cells cultured in neural 
induction media had an increased expression of NES and 
NEUN as early markers of neurons and MAP2 and TAU 
as mature neuronal markers. However, no expression of 
the mature astrocyte marker, GFAP was observed during 
this study. Our data suggest that human SADS cells may 
have the potential to differentiate into early and mature 
progenitor neural cells, in vitro.

PCL is a biodegradable polymer that has been used 
for tissue engineering applications due to its excellent 
mechanical properties, availability, solubility in a wide 
range of solvents and ability to blend with different 
polymers. However, due to its hydrophobic nature and 

lack of functional groups in its structure, the rate of cell 
attachment to the surface of PCL scaffolds is low (19, 32). 
Gelatin is a natural biopolymer derived from collagen and 
formed by breaking the triple-helix structure of collagen 
into a single-strand molecule. Moreover, the researchers 
found a biochemical interaction between cells and gelatin 
exposed to the surface of the nanofibers (17, 32). In our 
previous study, we investigated the effect of addition of 
gelatin to PCL on properties of final scaffolds and our 
results showed that PCL/gelatin at a weight ratio of 70:30, is 
suitable substrate for nerve tissue engineering application 
in terms of mechanical properties, biodegradation rate 
and cell attachment (19). 

We also applied PCL/gelatin 70:30 nanofibers as nerve 
guide in an in vivo model and our findings showed that 
PCL/gelatin 70:30 can serve as an appropriate substrate 
for peripheral nerve regeneration (33). Based on the 
attractive properties of PCL for biomedical applications, 
in this study, we modified the surface of PCL nanofibers 
by coating them with PRP and compared cell attachment 
and proliferation between PCL and PCL/PRP nanofibers.  
Moreover, we coated PCL/gelatin 70:30 nanofiber with 
PRP to examine the effect of PRP on cell behavior. 

Our results showed higher proliferation of SADS 
cells on scaffolds containing gelatin which is consistent 
with previous studies. To date, using of PRP in clinical 
applications has attracted more attention tissue repair and 
regeneration with very minimal threat to the patient. The 
collection of whole blood, the concentration and isolation 
of platelets to make PRP and its application in different 
forms such as liquid and in lyophilized forms has been 
demonstrated to be effective for improving cellular 
activity (34-40).

Also, PRP contains specific growth factors such as 
TGF-β, PDGF, FGF, VEGF and IGF. In this study, higher 
proliferation rates were observed for SADS cells seeded 
on the scaffolds coated with PRP which is likely due 
to the presence of the above-mentioned growth factors 
in the structure of PRP. RT-PCR analysis also showed 
differentiation of SADS cells to neural cells on all 
scaffolds.

Overall, our results showed differentiation of SADS 
cells to early and mature progenitor neural cells on 
nanofibrous scaffolds. PCL/gelatin/PRP nanofibrous 
scaffolds can serve as a good substrate for proliferation 
and differentiation of SADS cells to nerve cells and act 
as a good candidate for further in vivo experiments and 
nerve tissue engineering applications. 

Conclusion
We have revealed that stem cells derived from scalp 

adipose tissue could be isolated rapidly and simply. 
These stem cells were similar to other adipose-derived 
stem cells. Our results provide significant information 
regarding the optimum isolation of MSCs from adipose 
tissue for increasing clinical applications. Our data 
suggest that human SADS cells may have the potential 
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to differentiate into early and mature progenitor of 
neurons, in vitro. Coating of nanofibrous scaffolds with 
PRP influenced the morphology and proliferation of 
SADS cells seeded on the nanofibrous scaffolds. PCL/
gelatin nanofibrous scaffolds coated with PRP were found 
to be the best substrate for SADS cells in terms of cell 
proliferation and morphology which make these scaffolds 
marked candidates for further in vivo experiments and 
nerve tissue engineering applications.
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