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Abstract
Objective: It is necessary to evaluate fertility effective agents to predict assisted reproduction outcomes. This study was 
designed to examine sperm vacuole characteristics, and its association with sperm chromatin status and protamine-1 
(PRM1) to protamine-2 (PRM2) ratio, to predict assisted pregnancy outcomes. 

Materials and Methods: In this experimental study, ninety eight semen samples from infertile men were classified based 
on Vanderzwalmen’s criteria as follows: grade I: no vacuoles; grade II: ≤2 small vacuoles; grade III: ≥1 large vacuole 
and grade IV: large vacuole with other abnormalities. The location, frequency and size of vacuoles were assessed 
using high magnification, a deep learning algorithm, and scanning electron microscopy (SEM). The chromatin integrity, 
condensation, viability and acrosome integrity, and protamination status were evaluated for vacuolated samples 
by toluidine blue (TB) staining, aniline blue, triple staining, and CMA3 staining, respectively. Also, Protamine-1 and 
protamine-2 genes expression was analysed by reverse transcription-quantitative polymerase chain reaction (PCR). 
The assisted reproduction outcomes were also followed for each cycle. 

Results: The results show a significant correlation between the vacuole size (III and IV) and abnormal sperm chromatin 
condensation (P=0.03 and P=0.02, respectively), and also, protamine-deficient (P=0.04 and P=0.03, respectively). 
The percentage of reacting acrosomes was significantly higher in the grades III and IV spermatozoa in comparison 
with normal group. The vacuolated spermatozoa with grade IV showed a high protamine mRNA ratio (PRM-2 was  
underexpressed, P=0.01). In the IVF cycles, we observed a negative association between sperm head vacuole and 
fertilization rate (P=0.01). This negative association was also significantly observed in pregnancy and live birth rate in 
the groups with grade III and IV (P=0.04 and P=0.03, respectively). 

Conclusion: The results of our study highlight the importance sperm parameters such as sperm head vacuole 
characteristics, particularly those parameters with the potency of   reflecting protamine-deficiency and in vitro fertilization/
intracytoplasmic sperm injection (IVF/ICSI) outcomes predicting.
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Introduction 
While normal sperm parameters were found in almost 

15% of infertile males, the routine semen analysis is 
not sufficient to evaluate the male fertility status (1). 
Nowadays, several assays have been suggested to achieve 
more details in the male infertility diagnosis (2), which 
included nucleus assessment (chromatin integrity and 
condensation, protamination status, aneuploidy), and 
sperm function assay (1, 2). In addition, the evaluation 
of the detailed morphology of motile sperm in real-time 
at a high magnification (up to ×6600) which is called 
the motile sperm organelle morphology examination 
(MSOME), is another of these evaluations. In fact, 
MSOME is seen sperm morphology with more details, 
which is not provided at ×400 or ×200 magnifications (2).

Although, the origin and nature of vacuole remain 
unknown, sperm head vacuole has been defined as one 
of the most important of sperm abnormalities (2). Sperm 

morphology, particularly head vacuoles, has a major effect 
on the assisted reproductive techniques (ARTs) outcomes 
(3). Therefore, the selection of ‘good’ spermatozoa prior 
to intracytoplasmic sperm injection (ICSI) may be a 
powerful step to obtain better outcomes. The presence of 
morphologically and morphometrically normal head (2, 4, 
5) and lack of vacuoles or less than two small vacuoles 
is determined a ‘good’ spermatozoa (6). On the other 
hand, the classification of spermatozoa has been defined 
as the following four groups according to the presence or 
size of vacuoles: grade I: no vacuoles; grade II: ≤ 2 small 
vacuoles (which occupy < 4% of the head’s area); grade 
III: more than two small vacuoles or ≥1 large vacuole 
(which occupy between 13% to 50% of the head’s surface 
area); and grade IV: large vacuole with other abnormalities 
(7). The difference in size and location of sperm-head 
vacuoles may be associated with chromatin condensation 
failure as well as nuclear DNA damage (8, 9). So that, 
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the many studies have indicated the negative impact of 
spermatozoa’ nuclear vacuoles on embryo development, 
blastocyst rate, and pregnancy outcomes (10-13). 

Moreover, replacement of DNA-binding histones 
by protamines is a most important parameter in the 
fertilization success (14). Recently, an association 
between improper protamine mRNA/protein ratio and 
male infertility has been found. This ratio is known as a 
suitable biomarker for fertilization success. The relative 
ratio of protamine-1 to protamine-2 is almost at a 1:1 ratio 
(15). This relative ratio of protamine-1 to protamine-2 has 
been reported as a range of 0.5 to 1.4 for normozoospermia 
specimens (16). The correlation between male infertility 
and abnormal protamine mRNA ratio has been found 
(15). However, it should be further investigated whether 
the protamine mRNA ratio is impacted by vacuolated 
spermatozoa percentage, and correlated with fertilization, 
embryo development and pregnancy rates during in 
vitro fertilization (IVF) or ICSI cycles. Therefore, the 
sperm genomic quality and its association with assisted 
reproductive outcomes has been located as a one of the 
most important goals in recent years. 

However, it is not clear whether vacuoles influence 
assisted reproductive outcomes (e.g., fertilization rate, 
embryo development, and pregnancy rate). Therefore, 
we used deep learning algorithm (17) to select the ‘good’ 
spermatozoa. And also, we tried to investigate relations 
among vacuole(s) and the protamine-1 to protamine-2 
mRNA ratio and assisted reproductive outcomes. In this 
study, we used a novel deep learning algorithm in combined 
with high magnification and SEM images to visualize 
sperm’s vacuoles and its association to chromatin status, 
protamine mRNA ratio, and the sperm fertility potential. 
Also, we compared the protamine-1 to protamine-2 mRNA 
ratio among spermatozoa with different vacuole grades. In 
addition, the acrosome reaction, chromatin condensation 
and integrity, protamination status, and fertilizing capacity 
of semen samples with different degrees of vacuolated 
spermatozoa were studied during ICSI/IVF cycles. To the 
best of our knowledge, this is the first study to provide 
empirical evidence for this issue. 

Materials and Methods
Participants

A total of 309 specimens was collected from fertile and 
infertile men (age 22-38 years) who visited in Alzahra 
hospital (IVF center), Rasht, Iran, between May 2018 to 
September 2019. This experimental study was approved 
by the Guilan University of Medical Sciences committee 
(IR.GUMS.REC.1397.154). In addition, the informed 
consent was obtained from all the volunteer participants 
in the present study.  The couples who received ICSI or 
IVF services with an ICSI or IVF failure history were 
invited to this study. They were excluded based on their 
spermocytogram, and woman age. The semen samples 
were collected via masturbation after three to four days 
of sexual abstinence. The semen samples were analyzed 

according to the World Health Organization (WHO) 
criteria (18). The semen parameters such as pH, volume, 
motility, morphology, concentration, viability were 
assessed. The vacuolated semen samples were included in 
this study (n=98). Also, female factor infertility, maternal 
age >40 years, and less than three oocytes made our 
exclusion criteria. The couples with male factor infertility 
(e.g., severe teratozoospermia, asthenozoospermia, and 
oligoasthenoteratozoospermia) were also excluded from 
this study to remove effects of other sperm parameters on 
sperm quality and ART outcomes. 

Totally, ninety-eight semen samples were included in this 
study. The vacuolated sperm categorization and selection 
during ICSI cycles were performed with both high 
magnification (×1000) and a novel deep learning algorithm 
(17) as real-time (× 400). Also, a part of semen sample 
(~100 µl) was prepared for scanning electron microscopy 
(SEM) to view and determine the percentage of sperm’s 
vacuoles in more detail. Based on information obtained 
from evaluations, the semen samples were categorized into 
four groups according to Vanderzwalmen’s criteria: grade 
I: no vacuoles (normal/control group); grade II: ≤ 2 small 
vacuoles (which occupy < 4% of the head’s area); grade III: 
more than two small vacuoles or ≥1 large vacuole (which 
occupy between 13 to 50% of the head’s surface area); and 
grade IV: large vacuole with other abnormalities (7).  

Assay using a novel deep learning algorithm
Using deep learning algorithm, sperm morphology, 

especially vacuole was analyzed. This algorithm was 
performed with a high accuracy (94.65%) to detect 
sperm’s vacuoles. In addition, this method worked very 
fast and categorized sperm images in real-time. Therefore, 
the classification of spermatozoa was done using this 
algorithm in line with the results of high magnification 
(×1000) and SEM images. 

In this way, for detecting abnormalities in the vacuole, 
Javadi and Mirroshandel (17) have proposed a novel deep 
learning approach. They have trained a deep convolutional 
neural network on mini-batches generated from the 
training set. The size of a mini-batches in this study is 
64, which is a common value. Mini-batch means you 
only take a subset of all your training data during model 
construction. Also, they have proposed oversampling 
and data augmentation in order to overcome the problem 
of low count of training samples and class imbalance 
(i.e., the sperms number with abnormal vacuole in 
our training data is smaller than the number of normal 
sperms). This network consists of 24 convolutions, three 
pooling, and two fully-connected layers. The overall 
trainable parameters of the model are 5,637,649. The 
implementation of the model was done using TensorFlow 
and Keras.

Scanning electron microscopy 
For correct measurement of sperm vacuole, each semen 

samples were evaluated by SEM to observe the smallest 
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details. The semen samples were washed by using sucrose 
density gradient centrifugation at 3000 rpm for 10 minutes 
at RT temperature, and then, fixed in Karnovsky solution 
for 30 minutes at 4˚C. Then, the samples were treated with 
1% osmium tetroxide (OT20816-12-0, Merck, Germany) 
for 30 minutes as a post fixation step. Afterwards, the 
ascending degrees of ethanol (50, 70, 80, 90, 96%, and 
absolute alcohol) (E64-17-5, Hamontebmarkazi, Iran) 
were used to dehydrate. The drying was performed at a 
critical point (Balzers CPD-010). The specimens coated 
with gold (MED-010, BALZERS, USA) were examined 
in a Philips FEM 515 scanning electron microscope 
(Philips SEM 515, F.E.I. Company, Netherlands).

Sperm chromatin assays
Toluidine blue stain

The abnormality in the sperm chromatin structure was 
distinguished using toluidine blue (TB) staining. In this 
way, the air-dried smears (~100 µl semen samples) on 
silane-coated slides (SL002-72, BioMarq, India) were 
fixed in 96% ethanol-acetone solution (CAS 67-64-1, 
Merk, Germany) (1:1) at 4˚C for 1 hour. To hydrolysis, 
slides were put in 0.1 N HCl (109060, Merck Millipore, 
Chine) at 4˚C for 5 minutes, then were washed. The 
staining was done with 0.05% TB (in 50% Mcllvaine’s 
citrate phosphate buffer, pH=3.5) (T92-31-9, Merck, 
Germany) for 5 minutes at room temperature (RT). On 
average, 100 sperms were evaluated in each slide using 
a light microscope. The observation of light blue or deep 
violet/purple heads is the sign of existence normal or 
abnormal chromatin structure, respectively (Fig.1A). 

Aniline blue stain
The adhesion between lysine residues of histones 

and aniline blue (AB) stain were detected the abnormal 
condensation of sperm chromatin. Briefly, the smears 
(~100 µl semen samples) were fixed in the 4% formalin 
(50-00-0, Junsei Chemical, Tokyo, Japan). After washing, 
the slides were stained with 5% AB (AB 229660250, 
Sigma-Aldrich Co., St. Louis, MO, USA) in a solution 
of 4% acetic acid (pH=3.5) (A64-19-7, Merk, Germany) 
for 5 minutes at RT. On average, 100 spermatozoa in 
each slide were observed under a light microscope. The 
sperms with dark-blue or colorless heads were considered 
as abnormal and normal chromatin condensation, 
respectively (Fig.1B). 

Acrosome reaction assessment

The acrosome status (reacted acrosome and intact 
acrosome) was evaluated using triple staining. In brief, 
sperms (~100 µl semen samples) were put in 2% trypan 
blue (1:1) (T10282, Sigma, Germany), incubated at 37˚C 
for 15 minutes, and centrifuged at 600 × g for 5-10 minutes. 
Then, the pellet was washed and diluted in the Ham’s F10 
solution to obtain a clear/ pale blue mixture. In the next 
step, the washed sperms were fixed using glutaraldehyde 
(3% glutaraldehyde in 0.1 M cacodylate buffer at pH=7.4) 

(G111-30-8, Sigma, China) for 30 to 60 minutes, and 
were centrifuged at 6000×g for 5 minutes. The pellet 
was stained with Bismark brown Y (10114-58-6 , Sigma, 
Germany) at 40˚C for 5 minutes. Then, Rose Bengal stain 
(100467, Merck, Germany) was added at 24˚C for 20-45 
minutes. The smears were prepared from stained sperms, 
washed (in water), dehydrated (in an ascending degree of 
alcohol), and cleared in xylene (108633, Merck Millipore, 
China). At the end, almost 100 sperms in each slide 
were examined under a light microscope. Four staining 
templates were seen as follows: i. Dead sperm and intact 
acrosome as dark-blue post-acrosomal regions and pink 
acrosomes, respectively, ii. Dead sperm and degenerated 
acrosome as dark-blue post-acrosomal regions and blue/
white acrosomes, respectively, iii. Alive sperm and intact 
acrosome as light brown post-acrosomal regions and 
pink acrosomes, respectively, and iv. Alive sperm and 
degenerated acrosome as light brown post-acrosomal 
regions and blue/white acrosomes, respectively (Fig.1C). 

Chromomycin A3 stain
The degree of sperm protamination was determined by 

chromomycin A3 (CMA3) staining (89158-860, Sigma, 
Germany) (Fig.1D) as a detector of guanosine-cytosine-rich 
sequence. All air-dried smears (~100 µl semen samples) were 
fixed in the methanol/glacial acetic acid (3:1) for 20 minutes at 
4˚C. Then, the slides were treated for 20 minutes with 100 µl 
of CMA3 solution (0.25 mg/ml CMA3 in McIlvaine’s buffer, 
containing 10 µm MgCl2). The sperms with dull yellow 
staining (CMA3 negative) and bright yellow fluorescence 
(CMA3 positive) were considered as normal and abnormal 
chromatin protamination, respectively.

Fig.1: Sperm chromatin assays. A. Sperm cell heads with abnormal chromatin 
structure were deep violet (arrow) following toluidine blue staining. B. Sperm 
cell heads with abnormal chromatin condensation were dark blue (arrow) 
following aniline blue staining. C. The status of sperm acrosome reaction and 
viability was observed as following: dead sperm with an intact acrosome (black 
arrow), dead sperm without an acrosome (yellow arrow), live sperm with an 
intact acrosome (black star), and live sperm without an acrosome (yellow star) 
(scale bar: 10 µm). D. Spermatozoa stained with CMA3 was with dull yellow/
normal chromatin (CMA3-) and bright yellow/abnormal chromatin (CMA3+) 
(scale bar: 100 µm).

A
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Vacuolization and sperm parameters

The results of AB staining showed significant abnormal 
condensation rate of chromatin in the grade IV (P=0.02) 
in comparison with the control group (grade I). There was 
no significant difference in the viability and abnormality 
of the DNA structure of vacuolated spermatozoa among 
different grades (P=0.15, Table 1).

The presence of bright yellow fluorescence (CMA3-
positive) was observed more frequently in the spermatozoa 
with a large nuclear vacuole (LNV) (grade III: 2336⁄4200; 
55.6% vs. grade IV: 621⁄1500; 41.4%) than other groups. 
Therefore, a higher percentage of sperm protamine 
deficiencies in the vacuolated spermatozoa with grade 
III (P=0.04) and IV (P=0.03) was detected. Also, the 
presence of more than one small nuclear vacuole showed 
more abnormal chromatin protamination in comparison 
with large non-nuclear vacuole (P=0.03). The percentage 
of reacted acrosomes (blue/white) was significantly 
higher in the non-nuclear vacuoles spermatozoa (grade 
III and IV) in comparison with other groups (P=0.04 
and P=0.03, respectively). In addition, there was no 
significant difference in the sperms viability rate among 
these different groups (P=0.25).

The protamine mRNA ratio in the vacuolated 
spermatozoa 

As seen in Figure 3, the assessment of PRM1 gene 
expression showed a significant difference in the grade 
III (median 0.4457 ± 0.03, P=0.03) in comparison with 
the control group (group I, normal semen samples). 
In addition, comparison between grade IV and control 
group showed a significant difference in the PRM1 gene 
expression (P=0.0001). While, there is no significant 
difference in the PRM1 gene expression in the grade 
II (median 0.83184) in compared to the control group 
(median 1.0201 ± 0.06, P=0.35, Fig.3). In addition, the 
analysis of PRM2 gene expression showed significant 
differences among grade II (0.6623, P=0.01), grade 
III (median 0.60262 ± 0.007, P=0.0001), and grade IV 
(median 0.2772 ± 0.012, P=0.0001) in comparison with 
the control group (median 1.001 ± 0.04, grade I).  

The protamine mRNA ratio was evaluated among 
different vacuolization grades in the fertile and infertile men. 
Vacuolated spermatozoa from infertile men with grade IV 
(median 3.40006 ± 1.81, P=0.008) displayed a significant 
difference in the protamine mRNA ratio in comparison with 
the control group (median 1.02 ± 0.81 m, P=0.004). 

Fig.2: Evaluation of sperm morphology using the scanning electron microscope. A. The presence of small and large vacuoles and its location in the nuclear 
or non-nuclear position is clear. B. Grade I: without vacuoles, C. Grade II: with ≤ 2 small vacuoles (arrows), D. Grade III: more than two small vacuoles or 
≥1 large vacuole (Stars), and E. Grade IV: with large vacuole (stars).

Table 1: Vacuolization and sperm parameters

 Vacuole grade N Protamination 
status (%)

Spont. A.R. (%) Condensation 
status (%)

Chromatin 
integrity (%)

Viability (%) PRM1 : PRM2

I 27 28.3 ± 2.9 15.1 ± 1.9 22.7 ± 2.1 23.7 ± 2.4 65.45 ± 10.08 1.01917

II 24 32.4 ± 2.6 19.8 ± 2.1 29.5± 2.2 26.8± 2.5 59.9 ± 9.81 1.1149

III 23 36.1 ± 3.2* 27.16 ± 2.4* 32.4 ± 3.2 28.9 ± 3.1 59.02 ± 9.07 0.7397

IV 24 41.3 ± 3.4** 29.9 ± 2.7* 38.6 ± 3.6* 29.7 ± 3.2 55.14 ± 9.14 3.400**

There is a significant difference between chromatin protamine-deficient (CMA3), spontaneously reacted acrosomes and abnormal chromatin condensation 
(AB staining) in the spermatozoa with grade III and IV in comparison with the control group (grade I). The χ2 test was used to analysis differences among 
the groups. Data are expressed as mean ± SD and percentage (%). *; P=0.04, **; P=0.03, and Spont. A.R.; Spontaneously acrosome reaction.

A B C

D E
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Fig.3: The PRM1 and PRM2 gene expression of vacuolated spermatozoa. 
A significant difference was seen in the PRM1 gene expression 
(underexpression) of grade III (P=0.03) and grade IV (P=0.0001) of 
spermatozoa in comparison with the control group (grade I). Also, there 
is a significant difference in the PRM2 gene expression (over-expression) 
among different grades of spermatozoa in comparison to the control 
group (grade I):  II (P=0.01), III (P=0.0001), and IV (P=0.0001), respectively. 
*; P<0.05, **; P<0.01, and ****; P<0.0001.

Vacuolated spermatozoa and in vitro fertilization/
intracytoplasmic sperm injection outcomes

The results of the influences of different grading of 

sperm vacuolization and normal sperm on the clinical 
outcomes are shown in the Table 2. In the IVF cycles, 
a decrease in the fertilization rate was observed in 
the cases who received sperms of grade III (39.6%, 
P=0.018) and IV (32.4%, P=0.012) in compared to 
the control group (70.3%). However, no significant 
difference was seen in the fertilization rate in the ICSI 
cycles (III, 60.52 and IV, 57.2%) in comparison with 
the control group (65.1%, P=0.12). Increased levels of 
sperm vacuoles were also associated with a decreased 
rate of embryo development in comparison with the 
control group. So that, development rate in the ICSI 
cycles was significantly decreased in the grades of 
III=51.33% (P=0.04), and IV=49.17% (P=0.02), in 
compared to grade I=57%. While, declined embryo 
development rate was recorded in the IVF cycles as 
following: grades III=55.01 and IV=56% (P=0.04). 
The increased percentage of vacuolated sperms was 
correlated with the decreased chance of an embryo 
developing to the blastocysts stage. In this way, 
the rate of successful pregnancy was significantly 
decreased in the groups with vacuolated sperms (III 
and IV) under IVF treatment (28.57 and 21.42%, 
P=0.04 and P=0.019, respectively) in compared to the 
control (grade I) group, while this outcome was also 
significant in the ICSI group (III and IV grades: 33.3 
and 20%, P=0.02 and P=0.011, respectively).

Factors ranking 

Another important experiment was measuring of the 
effect of different aspects of vacuole on the male fertility 
(Table 3). The effect of vacuole location (nuclear) weighed 
more than the effect of other parameters on pregnancy.

Table 2: The effect of different vacuolization grade on the ART outcomes 

Vacuole grade 
of sperm

 ART technique Fertilization rate (%) Cleavage rate (%) Clinical pregnancy 
rate P/ET (%)

Live birth LB/IE (%)

I ICSI 65.1 57 5/12 (41.66) 3/5 (60)

IVF 70.3 68.1 7/15 (46.66) 4/7 (57.1)

II ICSI 53.26 55.31 4/11 (36.36) 2/4 (50)

IVF 60.03 62.32 5/13 (38.46) 3/5 (60)

III ICSI 60.52 51.33* 3/9 (33.33)* 1/3 (33.3)*

IVF 39.6** 55.01* 4/14 (28.57)* 1/4 (25)*

IV ICSI 57.2 49.17* 3/10 (30)** 1/3 (33.3)*

IVF 32.4** 56* 3/14 (21.42)** 1/3 (33.3)*

There is a significant difference between ART outcomes and grades of spermatozoa (III and IV). The χ2 test was used to analysis differences among the 
groups. Data are expressed as mean ± SD and percentage (%). *; P<0.05, **; P<0.01, ART; Assisted reproductive technique, ICSI; Intracytoplasmic sperm 
injection, IVF; In vitro fertilization, P; Positive cycle, ET; Embryo transfer, LB; Live birth, and IE; Implanted embryo.
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Table 3: The effect of different features of vacuoles on male fertility potential

Feature Protamination status Protamine ratio Chromatin 
condensation

Acrosome reaction Fertilization Pregnancy 

Nuclear location 0.0812 0.0752 0.0537 0.0529 0.0832 0.0875*

Number 0.0689 0.0543 0.0312 0.0241 0.0776 0.07601

Size 0.0567 0.0487 0.0192 0.0138 0.0617 0.0651

*; The effects of nuclear location weighed more than the effects of other features on pregnancy. The WEKA test was used to analysis differences among 
the groups. 

Discussion
A novel insight was provided in this study that how 

vacuolization affects sperm fertility potential. It is a better 
predictor of IVF/ICSI outcomes following evaluation 
of sperm by using high magnification, deep learning 
algorithm, and SEM images. The results of this study 
show that variations in vacuole parameters including 
higher size, greater frequency, and nuclear location were 
associated with protamine-deficient sperms as well as 
CMA3 positive and aberrant PRM1 and PRM2 gene 
expression. In addition, the presence of non-nuclear 
vacuole leads to increased immature acrosome reaction 
and decreases the fertilization rate under IVF cycles.  

Although, limitations of routine semen analysis have 
been reported, this is performed as a common evaluation 
in many clinical practices (19). This conventional semen 
analysis does not recognize the subtle abnormalities in the 
male genome, DNA structure and condensation (2). The 
abnormalities in chromatin structure and condensation 
is known to be correlated with numerous indicators of 
assisted reproductive outcomes, including fertilization 
rate, embryo development rate and quality, pregnancy 
and spontaneous miscarriage (19-21). Although, it 
has been determined that human sperms have a highly 
dynamic and key roles in the embryonic development, the 
utility of more detail analysis of sperm is still a matter 
of debate (22, 23). In the present study, the predictive 
value of vacuolated sperm testing was distinguished 
between potentially pregnant and not potentially pregnant 
couples who were undertaken IVF or ICSI cycles. As 
mentioned above, these poor outcomes may have related 
to abnormalities of chromatin condensation and sperm 
protamination (CMA3 positive) with aberrant PRM1 and 
PRM2 gene expression. While, the cause of abnormal 
sperm chromatin condensation is still unclear. The results 
of this study suggest a direct correlation between sperm 
nuclear vacuolization and abnormalities in the sperm 
chromatin packaging. It seems that the contribution of the 
immune seminal cells, mature sperms and immature germ 
cells lead to the production of reactive oxygen species 
that can cause vacuolated head in the sperms (22). It has 
been also reported that poor chromatin condensation and 
aneuploidy could be observed in the spermatozoa with 
large vacuoles (24). 

In this study, the protamine mRNA ratio of infertile men 

was 0.739 ± 0.212 and 3.400 ± 1.281 in the vacuolated 
spermatozoa with grades III and IV, respectively. While, 
the protamine mRNA ratio has been reported in the 
previous studies as follows: 0.83 ± 0.05 (n=50) (25), 1.3 
± 0.1 (n=12) (26) and 0.98 ± 0.02 (n=77) (16), a range 
of 0.54 to 1.43 of the protamine ratio has been reported 
in normozoospermic men (16). The ratio of 1.06 ± 0.60 
versus 10.68 ± 33.72 was also seen in the normozoospermia 
semen samples versus teratozoospermia ones (15). 
Therefore, present study outcomes indicated that 
vacuolization affects negatively the protamine ratio in the 
infertile men. So that, a low protamine ratio was seen in 
the vacuolated spermatozoa with grade III (protamine-1 
was underexpressed). Also, a high protamine ratio was 
observed in the vacuolated spermatozoa with grade IV 
(normal expression of protamine-1 and underexpression 
of protamine-2). Aoki et al. (27) reported PRM1 under 
expression and PRM2 overexpression in the infertile 
patients with a low protamine ratio. On the other hand, 
in the patients with a high protamine ratio, PRM2 was 
underexpressed and PRM1 has a normal expression. 
Numerous studies also indicated a significant aberrant of 
protamine ratio in infertile men (28, 29) and our result is 
in line with them. 

Moreover, it is widely accepted that there is a correlation 
between sperm quality and infertility (22). In addition, 
our study results indicate this correlation between sperm 
quality and fertility potential. In this way, the embryos 
resulting from morphologically abnormal sperm lead to 
significantly lower pregnancy rates (2). The correlation 
between spermatozoa with large nuclear vacuoles and ICSI 
outcomes has been reported (24). While the origin and 
consequences of vacuoles of sperm head are also a problem 
of controversy. Therefore, the association among different 
sizes, locations, and frequencies of vacuole with chromatin 
status, IVF/ICSI outcomes, and weight of each feature 
(size, location, and frequency of vacuoles) on pregnancy 
rate are essential that this study considered them.

Kacem et al. (30) showed that a large sperm head 
vacuole could originate from spermatogenesis damaging, 
abnormal maturation or modifications during the 
acrosome reaction. Our results are consistent with the 
results of this study. So that, the immature acrosome 
reaction was greater in the spermatozoa of grade III and 
grade IV, therefore, the fertilization rate was decreased in 
these groups. 
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Conclusion
The results of this study indicate that the semen samples 

from infertile men are characterized by a higher ratio of 
vacuolization grades, although, there are categorized in 
normozoospermia samples. This frequency of vacuolization 
may be correlated to abnormal chromatin condensation, 
greater sperm protamine deficiencies, declined PRM1 and 
PRM2 gene expression, and a high protamine mRNA ratio. 
Also, tracing the IVF/ICSI outcomes showed that the poor 
fertilization rate during (IVF cycles), embryo quality, and 
declined clinical pregnancy rate may have related to the 
abnormal maturation and sperm head vacuoles. Therefore, 
it seems the evaluation of the semen sample vacuole status, 
as a definite parameter before starting treatment cycles, 
may be a useful tool for selecting the best treatment cycle 
(IVF or ICSI) in ART plan.
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