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Abstract
Objective: Hemoglobin F (HbF) augmentation is considered a clinically beneficial phenomenon in β-hemoglobinopathies. 
Prevention of γ-globin gene silencing, inspired by the hereditary persistence of fetal hemoglobin, may be a suitable strategy 
to upregulate HbF expression in these patients. Therefore, our objective was to assess the potential feasibility of induced -117 
G→A substitution in HBG promoter in prevention of transcriptional silencing of the γ-globin.
Materials and Methods: In this experimental study, human peripheral blood-derived hematopoietic stem cells (HSCs) and 
the K562 cell line were differentiated to erythroid cells. Erythroid maturation was examined using cell morphology parameters 
and flow cytometry analysis of CD235a expression. A synthesised chimeraplast was transfected to differentiating cells. The 
efficiency of chimeraplast delivery into target cells was assessed by flow cytometry. Restriction-fragment length polymorphism 
and DNA sequencing verified oligonucleotide-directed mutagenesis. Gene conversion frequency and globin genes expression 
was quantified through Allele specific-quantitaive polymerase chain reaction (AS-qPCR) and quantitative-PCR respectively.      
Results: Increase in CD235a-expressing cells along with observations made for different stages of erythroid maturation 
confirmed erythroid differentiation in HSCs and K562 cells. γ to β-globin gene switching was estimated to be on days 
18-21 of HSC differentiation. Flow cytometry analysis showed that more than 70% of erythroid progenitor cells (EPCs) 
were transfected with the chimeraplast. The highest gene conversion efficiency was 7.2 and 11.1% in EPCs and 
K562 cells respectively. The induced mutation led to a 1.97-fold decrease in β/γ-globin gene expression in transfected 
EPCs at the experimental end point (day 28) whereas, due to the absence of β-globin gene expression following K562 
differentiation, this rate was not evaluable.                 
Conclusion: Our results suggest the effectiveness of chimeraplasty in induction of the mutation of interest in both 
EPCs and K562 cells. We also demonstrate that the single nucleotide promoter variant was able to significantly inhibit 
γ-globin gene silencing during erythroid differentiation. 
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Introduction
Beta-thalassemia is one of the most common 

monogenic diseases, which turns out to be a significant 
public health concern due to its global burden and 
several complications associated with its homozygous 
form. Currently, thalassemia major patients are treated 
with regular blood transfusion, iron chelation and 
judicious splenectomy, all of which are temporary 
strategies accompanied by complications and life 
threatening side effects (1, 2).

Currently, allograft hematopoietic stem cell 
transplantation (HSCT) is thought to be the only definitive 
treatment for β-thalassemia patients. Although, the 
success of transplantation, under ideal conditions, is more 
than 90%, the major limitation is lack of HLA-matched 
donors and therewith an outbreak of acute and chronic 
graft-versus-host disease (3). Several gene therapy 
techniques have been introduced which insert a normal 

copy of the β-globin gene in β-thalassemic patient’s 
hematopoietic stem cells (HSCs). These approaches have 
been undertaken in autologous HSCT to surmount the 
enormous problems that come along with allograft HSCT. 
The majority of gene therapy experiences are based on 
normal β-globin gene integration into the genome of 
target cells through suitable vectors. Viral vectors such 
as oncoretroviruses and lentiviruses are common gene 
transfer agents in this context, which despite their high 
efficiency compared with other vectors, have limited 
practical use due to the risk of insertional mutagenesis 
and oncogenesis (4-6).

Chimeraplasty is a non-viral gene therapy technique 
in which single nucleotide conversion is executed via an 
artificial chimeric oligonucleotide. This oligonucleotide 
is synthesized from DNA and RNA fragments and is 
complementary to a specific sequence except for a single 
mismatch nucleotide at the substitution position of 
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interest. Accordingly, this approach is exclusive to site-
specific gene correction of point mutations (7-9).

Recently, hemoglobin F (HbF) inducers, both 
pharmaceutical and genetic agents, have attracted a vast 
interest for their potential therapeutic characteristics 
in ameliorating the severity of symptoms in Cooley’s 
anemia and sickle cell disease. Non-deletional hereditary 
persistence of fetal hemoglobin (HPFH) is a genetic 
disorder mainly caused by point mutations in the γ-globin 
gene promoter. These variants prevent γ to β-globin 
gene switching during development. In some cases, HbF 
levels may reach up to 30% in heterozygotes and up to 
100% in homozygous HPFH, and despite bearing such a 
genetic defect, HPFH is clinically asymptomatic even in 
homozygote form (10, 11). 

Taking advantage of the HPFH genetic mechanism, 
we tried to induce the HPFH-like point mutation (-117 
G→A) in the γ-globin gene by applying the chimeraplasty 
approach. The main aim of this experimental study was 
therefore to prevent γ-globin gene silencing in erythroid 
progenitor cells (EPCs) and the erythroleukemia cell line 
K562 using gene therapy strategy appropriates for all 
β-thalassemia cases. Subsequently, the consistency of 
γ-globin gene expression was tracked during erythroid 
differentiation.

Materials and Methods
Chimeric oligonucleotide designing

 In this experimental study, a 68-base synthesized 
chimeric RNA/DNA oligonucleotide (RDO) (now termed 
chimeraplast) was designed comprising a central core of 5 
DNA-based nucleotides flanked by 10 2´-O-Methyl RNA 
sequences. To obtain stability in the chimeraplast structure, 
two nuclease-resistant hairpin caps of 4 T-residues were 
also designed followed by 25 complementary nucleotides 
to both the central DNA and the surrounding 2´-O-Methyl 
RNA sequences at the 5 end. Additionally, short regions 
with high melting temperature sequences were inserted 
at the 3´ end (9). The chimeraplast sequence was entirely 
matched to the corresponding genomic sequence of HBG 
promoter except for a single nucleotide change in the center 
of 5´base DNA stretch. This enabled the chimeraplast to 
form a mismatch with the G nucleotide located at position 
-117 of the HBG promoter. To evaluate the efficiency of 
transfection, an extra chimeric RDO was designed and 
labeled with FAM at its 5´ end with similar specification 
to the main chimeraplast. All experiments were carried 
out in duplicate for both treated and untreated control 
groups of HSCs and the K562 cell line.

Erythroid differentiation
Erythroid series were differentiated from HSCs existing 

in peripheral blood mononuclear cells (PBMNCs) 
using one-phase liquid medium culture system. Anti-
coagulated whole blood samples, collected from normal 
volunteers with informed consent, were mixed with equal 
volume of phosphate buffered saline (PBS) and gently 

layered at a ratio of 3:1 onto the mononuclear separation 
medium (Lymphodex, Inno-Train, Germany). Following 
centrifugation, the mononuclear layer at the interface 
was harvested and cultured in a 6-well culture plate at 
a density of 6×106 cells per ml of  Iscove’s Modified 
Dulbecco’s Medium (IMDM, Caisson, USA) containing 
30% fetal bovine serum (not heat-inactivated, Gibco, 
USA), 1% bovin serum albumin, β-mercaptoethanol 
(10-5 M, Sigma, USA), dexamethasone sodium phosphate 
(10-6 M, Sigma, USA), human hollo-transferrin (0.3 mg/mL, 
Sigma, USA) and StemSpan™ Erythroid Expansion 
supplement which contained recombinant human stem 
cell factor (SCF), interleukin-3 (IL-3) and erythropoietin 
(EPO) (STEMCELL Technologies, Canada).

Cells were then incubated for 28 days at 37˚C with 5% 
CO2 and the differentiation medium was refreshed on day 
14. At four time points over a 28-day period (days 7, 14, 
21 and 28) cells were harvested from culture media and 
prepared for morphology assessment (Wright staining). 
Consequently, the expression of the surface marker, CD235a, 
was assessed by flow cytometry and the expression of globin 
gene was quantified using quantitative reverse transcription 
polymerase chain reaction (RT-qPCR).

K562 cells (ATCC, USA) were also differentiated 
with analogous conditions in 7 days and were similarly 
assessed for erythroid differentiation as well as globin 
gene expression profile.

Flow cytometry
Erythroid differentiation was tracked by evaluating the 

percentage of CD235a (Glycophorin A) positive cells per 
well of each individual 6-well culture plate. Cells were 
harvested, transferred to a 1.5 ml microtube and spun 
down at 500 xg for 5 minutes. To prevent the interference 
of pre-existing red blood cells (RBCs), the cell pellet was 
washed in 1 ml of RBC lysing solution and incubated with 5 
µl of monoclonal anti-Glycophorin A-phycoerythrin (PE) 
(Dako, Denmark). After, the cells were washed in PBS and 
the single cell suspension, prepared in 500 µl PBS, was 
subjected to a flow cytometer (BD FACSCalibur, USA) 
versus PE labeled isotype control. Data were analysed 
using the FlowJo 7.6 software (Tree Star Inc., USA).

Cell transfection
Upon erythroid colony growth on day 16, following 

culture initiation, once erythroid cells were strikingly 
increased in number, cells were transfected with RDO 
using a polycationic vector, polyethyleneimine (PEI, 
Sigma, USA). PEI (30 µl of 1 mg/ml) and RDO (10 µg) had 
been previously diluted in 120 µl of serum and antibiotic 
free Opti-MEM media (Gibco, USA), and incubated at 
room temperature for 10 minutes to form RDO-PEI 
complexes. Subsequently, 850 µl of supplemented IMDM 
was added to the complex and the mixture was then added 
dropwise to 6-well plates and mixed by gently rocking. 
The same trend was performed for the K562 cell line with 
the transfection time being on day 1.  
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Transfection efficiency
To evaluate transfection efficiency, FAM-RDO-

transfected EPCs and K562 cells were detected with flow 
cytometry and fluorescent microscopy on the second day 
of transfection. Cells were initially harvested and washed 
in PBS, and then assessed prior and after labeling with anti 
CD235a-PE antibody through the FL1 and FL2 channels 
of a BD FACSCalibur flow cytometer. Additionally, 
a number of cells were evaluated for nuclear entry of 
chimeric oligonucleotides by Fluorescence Microscope 
Axiostar Plus (Gottingen, Germany).

 Polymerase chain reaction-restriction-fragment
 length polymorphism

Presence of the point mutation in the HBG promoter 
resulted in a restriction site for Tru1l (MseI) restriction 
endonuclease. Genomic DNA was extracted from 
transfected cells and the region of interest was amplified 
using specific primers to amplify a 223bp DNA fragment 
(Table 1). The amplicon was subsequently digested with 
Tru1l restriction enzyme (Thermo scientific, Lithuania) 
for up to 16 hours according to manufacturers’ instructions 
and DNA fragments were separated by electrophoresis on 
a 2% agarose gel.

 Table 1: Primer Sequences used for RT-qPCR, AS-qPCR, conventional PCR
amplification and Sanger sequencing

Target Sequence primer (5ˊ-3ˊ)

β-actin cDNA F: ATCGTGCGTGACATTAAGGAG
R:  GAAGGAAGGCTGGAAGAGTG

β-globin cDNA F: CTGAGGAGAAGTCTGCCGTTA
R: AACAGCATCAGGAGTGGACA

γ-globin cDNA F: TTCACAGAGGAGGACAAGGCTAC
R: GCAGAGGCAGAGGACAGGTT

BCL11a-xl cDNA F: GTCTCGCCGCAAGCAAGG
R: GCCGTGGTCTGGTTCATCATCT

AS-qPCR wild type F: AAACTGGAATGACTGAATCG
R: CTTGTCAAGGCTATTGGGC

AS-qPCR mutant F: AAACTGGAATGACTGAATCG
R: CTTGTCAAGGCTATTGGGT

γ-globin promoter and 
sequencing primer

F: TTATTGATAACCTCAGACGTTCC
R: ATCTCAATGCAAATATCTGTCTG

RT-qPCR; Quantitative reverse transcription polymerase chain reaction 
and AS-qPCR; Allele specific-quantitaive PCR.

DNA sequencing
Digested fragments were isolated and extracted by 

GEL DNA recovery kit (Vivantis, Malaysia), and then 
ligated with T4 DNA ligase (Vivantis, Malaysia) for 4 
hours at 16ºC. Eventually, ligated DNA was reamplified 

and directly sequenced along with undigested wild-type 
fragment using the same primer pairs used in PCR-
restriction-fragment length polymorphism (PCR-RFLP) 
(Table 1).

Chimeraplasty efficiency by allele specific-quantitative 
polymerase chain reaction

Allele-specific quantitative PCR (AS-qPCR) was 
carried out by using a real-time PCR system (QIAGEN, 
Germany) to quantify the relative allelic rate of mutant 
HBG promoter. Wild type and mutant HBG promoters 
were amplified by a single common forward primer and 
reverse allele-specific primers (Table 1). Amplification 
efficiency of the intended amplicons were determined 
by the standard curve of each allele through logarithmic 
dilution of PCR products of each amplicon. Eventually, 
the ratio of mutant alleles versus wild-type was quantified. 
Subsequently, amplified products were verified by 2% 
agarose gel electrophoresis.

Quantitative reverse transcription polymerase chain 
reaction

Total RNA was purified from erythroid and K562 
cells using the TRIzol reagent (Life Technologies, USA) 
and quantified using the NanoDrop spectrophotometer. 
Subsequently, DNaseI treated RNA was reverse 
transcribed to complementary DNA (cDNA) by using the 
one-step SYBR PrimeScript RT Reagent Kit (TaKaRa, 
Japan). Relative quantification of β and γ-globin genes 
expression were assessed using specific primers and 
SYBR Green PCR mastermix (TaKaRa, Japan) (Table 
1). Expression analysis of β-actin, the housekeeping 
gene, was also evaluated during in vitro erythroid 
differentiation in transfected and non-transfected cells. 
Standard curves were plotted and amplification efficiency 
of each gene was obtained through dilution series of PCR 
amplicons and data were finally recorded as β/γ-globin 
transcript expression ratio. All reactions were undertaken 
in duplicate.

Statistical analysis
Data are presented as mean ± SD based on replicate 

experiments. Independent t test was used to compare 
unpaired groups. The results with P<0.05 was considered 
as statistically significant. All data were statistically 
analysed and visualized using the GraphPad Prism 
software (version 6.04, GraphPad Software, CA).

Results
Erythroid differentiation of peripheral blood 
hematopoietic stem cells and the K562 cell line

HSCs from PBMNCs were successfully differentiated 
to mature erythroid cells. Flow cytometry assessment 
revealed an approximately two-fold increase in the 
percentage of CD235a positive cells (1.4 to 2.38%) 
after one-week of differentiation. Two weeks after 
differentiation, CD235a positive cells reached the highest 
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value of 27.6% and remained rather constant (26.8%) 
within the next 7 day interval even though a slight 
decrease was observed at the experimental end point 
(21.9%) (Fig.1A).

The first colonies of erythroid series were discernible 
under the inverted microscope 3 days following the culture 
initiation. Between days 7 and 14, cells displayed early 
normoblast morphology (pronormoblast and basophilic 
normoblast) with Wright’s stain. Colonies expanded and 
gradually spread over a period of 21 days. On day 21, 
a considerable number of erythroid cells transformed 
into polychromatophilic normoblasts, which gave rise to 
orthochromatophilic normoblasts on day 28 (Fig.1B, C).

Different stages of erythroid maturation in growth 
factor-stimulated K562 cells were also observed with 
Romanowsky stain. After 7 days of treatment with 
erythroid differentiation factors, K562 cells differentiated 
into orthochromatophilic normoblasts and the percentage 
of CD235 positive cells changed from 3.26% on day 0 to 
an average of 42.2% on day 7. 

Transfection efficiency
After 24 and 48 hours, the percentage of transfected 

cells including CD235a-positive cell population was 
found to be more than 70% (ranging from 70 to 80%) 
by flow cytometry assessment. However, the green 
fluorescent signal visualized from FAM-labeled RDOs 
in nuclei showed that only one third of the cells  were 
successfully nucleofected at the final time point (Fig.2). 
Nucleofection was assessed after adequate resting time 
including 24 and 48 hours following transfection. 
Nevertheless, it might be assumed that even after 2 
days, RDOs could still introduce into the cells, leading 
to an elevation of nucleofection efficiency.

Polymerase chain reaction- restriction-fragment 
length polymorphism 

A 223 bp DNA fragment spanning the target region 
in HBG promoter was amplified in transfected and 
non-transfected cells with specific primers (Table 
1), and then incubated with the Tru1l restriction 
enzyme. Products showed the co-existence of the 
undigested 223 bp and the two digested 151 bp and 
72 bp fragments representing the partially expected 
nucleotide substitution through chimeraplasty in both 
EPCs and the K562 cell line (Fig.3).

Fig.1: Verification of erythroid differentiation by expression analysis of CD235a, inverted and light (×100) microscopic assays. A. After 28 days of 
hematopoietic progenitor cells erythroid differentiation, the percentage of CD235a positive cells changed from 2.38% on day 7 to an average of 27.6, 26.8 
and 21.9% on days 14, 21 and 28 respectively, B. Erythroid colonies expanded and gradually spread during a 28-day time period, and C. Between days 
7 and 14, cells displayed pronormoblast and basophilic normoblast morphology. On day 21, a considerable number of erythroid cells transformed into 
polychromatophilic normoblast, which were then differentiated into orthochromatophilic normoblast by the end of day 28.

A

B

C
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Fig.2: Efficiency of RDO transfection in erythroid progenitor cells (EPCs). 
A. Transfection efficiency was assessed through fluorescent microscope, 
B. Flow cytometry 48 hours post-transfection. The dot-plot histogram 
represents FAM-labeled RDO uptake by more than 70% of cells, and C. 
Quadrant regions display the percentage of transfected EPCs (double 
positive population).

Fig.3: Confirmation of the presence of induced point mutation by PCR-RFLP 
and Sanger sequencing methods. A. Visual representation of restriction 
endonuclease digestion of the 223 bp fragment of the HBG promoter. (a) 50 
bp ladder, PCR-amplified and Tru1l-treated HBG promoter from (b) untreated 
and (c) RDO-treated EPCs and B. The sequence of digested 151 bp and 72 bp 
fragments following gel purification, ligation and reamplification (A allele) and 
undigested 223 bp fragment of the HBG promoter (G allele). 

DNA sequencing
Gel-extracted 151 bp and 72 bp fragments were ligated, 

re-amplified and sequenced with the Sanger method, 
confirming the PCR-RFLP result by showing the G→A 
substitution at position -117 in the HBG promoter (Fig.3).

Conversion efficiency
To assess the quantification of gene conversion, AS-qPCR 

was used. Amplification efficiency (E) was determined to be 
0.98 for the wild-type allele, and 1.0 for the mutant allele 
and the housekeeping gene. The mean cycle of threshold 
(CT) value of mutant (A) allele, non-mutant (G) allele and 
β-actin were measured in untreated and treated EPCs on day 
19 (three days after transfection) in duplicate. The results 
showed no amplification for the mutant allele in untreated 
samples. The allelic ratio of mutant HBG promoter to 
wild type in each sample was calculated based on A-allele 
efficiency CT/(G-allele efficiency CT+A-allele efficiency 
CT)×100. Accordingly, the efficiency of gene conversion 
in EPCs was quantified as 5.9% and 7.2% in 2 successful 
experiments while this value was measured to be 11.1% in 
the K562 cell line. Specific amplification of each allele was 
verified by agarose gel electrophoresis which resulted in one 
specific band of 172 bp (Fig.4). 

Gamma and β-globin gene transcript levels
A decreasing trend in the ratio of β/γ globin gene expression 

level was observed from day 0 to day 18 during erythroid 
differentiation in the untreated control group. This parameter 
stayed at a relatively constant level amongst days 18 to 21 
while an increase was observed from day 21 onward. These 
findings suggest that γ to β-globin gene switching initiated 
around day 21, concurrent with the polychromatophilic 
normoblast phase of maturation. Moreover, the high β/γ 
expression rate in the first few experimental days (in 
which no switching had occurred and β-globin expression 
was not expected) was likely due to the presence 
of reticulocytes and the relative stability of globin 
transcripts in the culture environment. However, when the 
reticulocytes were destroyed overtime, this parameter got 
much closer to the expected value.

Along with cell maturation, relative expression level 
of γ-globin gene in K562 cells showed an increase 

A

B

C

A B
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of approximately 12-fold (P<0.0001) on day 7 when 
compared with the base line expression on day 0. 
However, the induction of differentiation did not trigger 
β-globin gene expression and thus the related transcript 
overexpression could not be recognized using RT-qPCR 
prior and after K562 cell differentiation.

Fig.4: Agarose gel electrophoresis of AS-qPCR products amplified in 1) 
untreated EPCs, 2) treated K562 and 3) treated EPC samples with G-allele 
(a) and A-allele (b) specific primers.

Effect of the inducible variant on the expression level 
of γ and β-globin

Subsequent to nucleotide substitution in the genomic 
region of interest, expression levels of β and γ-globin were 
measured at the transcript level in the treated cells, which 
were previously subjected to erythroid differentiation. 
However, due to undetectable levels of β-globin transcripts 
in either normal or mutant K562 cells, it was not possible to 
compare the relative rate of β and γ-globin transcript levels. 

Evaluation of γ and β-globin expression patterns in 
transfected EPCs during erythroid differentiation showed 
that, in comparison with the untreated group, there was a 
1.51-fold increase (P<0.05) in γ/β-globin expression ratio on 
day 21 in treated cells and the rate of change rose to 1.97-fold 
increase (P<0.05) at the experimental end point (day 28). 

Accordingly, the relative expression of γ-globin to the 
housekeeping gene (β-actin) was significantly higher in 
treated cells when compared with non-treated controls 
on day 28 (0.42 vs. 0.23, P<0.05). In contrast, β-globin 
relative expression in treated cells was significantly 
decreased in comparison with non-treated controls on the 
same day (0.27 vs. 0.46, P<0.05). Taken together, these 
results suggest the effectiveness of the inducible single 
nucleotide variant in significantly preventing γ-globin 
gene silencing (Fig.5). However, there was no significant 
difference in γ-globin gene expression between treated 
and untreated K562 cells at different differentiation days.

 

Fig.5: Expression analysis of β-globin, γ-globin and β/γ-globin transcript 
ratio. A. β-globin expression in treated EPCs was down-regulated to 0.59-
fold (*; P<0.05) and B. γ-globin gene expression showed 1.82-fold increase 
in treated EPCs (*; P<0.05) on the final day of differentiation when 
compared with non-treated cells. Representative β/γ-globin transcript 
ratio in RDO-treated, and Non-treated EPCs, C. At day 28 (**; P<0.001) 
and D. During erythroid differentiation. 

A

B

C
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Discussion
Although the rate of success of chimeraplasty is still 

under debate, it has been so far used for inducing or 
modifying point mutation in various studies. This rate 
varies substantially in previous studies from 0.05% 
reported by Igoucheva et al. (12) to 50% reported by 
Cole-strauss et al. (13). Surveys have shown that numerous 
factors including RDO structure, quality, concentration 
and size along with type of cell and delivery system may 
significantly influence the success or conversion rate of this 
method (14). 

Here, we used chimeraplasty for a G→A nucleotide 
substitution at position -117 of the γ-globin gene 
promoter in EPCs originating from peripheral blood 
HSCs. Besides, we applied this method to K562 cells 
to set up the transfection, mutagenesis and erythroid 
differentiation. This specific cell line was used since it can 
spontaneously develop characteristics similar to EPCs  
and predominantly expresses the γ-globin gene.

Although our results showed a more efficient rate of 
nucleotide conversion in K562 cells in comparison with 
EPCs, in contrast to Addya et al. (15) and Isoda et al. (16), 
no β-globin gene expression was detected in differentiated 
K562 cells. However, these findings corroborate previous 
observations where β-globin expression was not observed 
in K562 cells (17, 18). 

A number of investigations have reported that the 
inability of erythroid growth factors (IL-3, EPO and SCF) 
in mediating the BCL11a-xl (i.e. the main transcription 
factor for γ to β-globin switching)  signaling pathway 
may be the major reason that globin switching does not 
take place in K562 cells (19). We, however, observed that 
albeit BCL11a-xl expression was upregulated by 6-fold 
following erythroid differentiation, β-globin did not 
show any expression in K562 cells (data not shown). 
Some other studies have suggested that homologous 
recombination (HR) is a potential molecular 
mechanism underlying oligonucleotide-mediated 
site directed mutagenesis. HR comprises a series of 
molecular processes essential for DNA repair. Rad51 
nucleoprotein and its homologue RecA in prokaryotes 
play a key role in HR reactions and their recombinase 
activity is required for efficient gene recombination 
(20, 21). There is enough evidence to show that 
Rad51 recombinase has a higher expression level in 
diverse cancer cells in comparison with normal cells. 
This phenomenon may indeed be the possible cause 
for the diversity in conversion efficiencies obtained. 
Likewise, it may also explain the difference in results 
obtained from the two types of cells used in this study 
where increased expression of Rad51 recombinase 
in K562 cell line has been recently shown (22, 23). 
Furthermore, a lower purity of directly differentiated 
HPCs at the transfection time, due to the one-phase 
medium liquid culture system, may also affect the 
efficiency of targeted mutagenesis in EPCs. 

In a recent similar work by Chin et al. (24) triplex-forming 
peptide nucleic acids were utilized to mediate targeted 
gene conversion of -117 HPFH and hypoxia response 
element (HRE) donor DNA in expansion conditions of 
CD34+ cells. This resulted in significant γ-globin gene 
upregulation that was mostly the consequence of the HRE 
element and hypoxic culture conditions rather than the 
HPFH variant since no considerable upregulation was 
observed for γ-globin gene by using only the HPFH donor 
DNA. This discrepancy can be explained in the following 
two ways. First, it has been recently found that the -117 
G>A variant is associated with COUP-TFII DR-binding 
element disruption in the γ-globin gene promoter, resulting 
in stage-specific γ-globin gene silencing but not increased 
γ-globin gene expression in undifferentiated CD34+ 
cells (25, 26). This hypothesis is corroborated with our 
results where no significant difference in γ-globin gene 
expression was detected between treated and untreated 
K562 cells in which no γ to β-globin gene switching had 
occurred after erythroid differentiation. 

Secondly, if the effect of such variants results in elevated 
expression of γ-globin rather than preventing γ-globin 
gene inactivation, it may lead to an imbalance in the ratio 
of α and non-α (β+γ) globin chain synthesis, which has not 
been previously observed in HPFH (27, 28). Therefore, 
we decided to work on differentiating cells undergoing 
γ-globin gene switching process. 

It is worth noting that in contrast to our study, which 
directly targeted the cell genome, Li et al. (29) designed 
a chimeric oligonucleotide to trigger gene conversion 
in a plasmid, however, it resulted in a lower efficiency 
associated with plasmid instability in subcloning cells.

Conclusion
In the present study, the HBG promoter inducible variant 

(-117 G→A) was successfully introduced into the genome 
of EPCs through chimeraplasty and noticeably reduced 
γ-globin gene silencing. However, current laboratory 
approaches are not capable of elucidating the effects of 
γ-globin gene upregulation on either increasing the total 
hemoglobin or the clinical status of patients suffering 
from β-hemoglobinopathies. Consequently, further 
investigations are warranted to introduce genetically 
manipulated cells to animal models.
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