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Abstract
Objective: Metabolic syndrome (MetS) is a complex multifactorial disorder that considerably burdens healthcare 
systems. We aim to classify MetS using regularized machine learning models in the presence of the risk variants of 
GCKR, BUD13 and APOA5, and environmental risk factors.  
Materials and Methods: A cohort study was conducted on 2,346 cases and 2,203 controls from eligible Tehran 
Cardiometabolic Genetic Study (TCGS) participants whose data were collected from 1999 to 2017. We used different 
regularization approaches [least absolute shrinkage and selection operator (LASSO), ridge regression (RR), elastic-
net (ENET), adaptive LASSO (aLASSO), and adaptive ENET (aENET)] and a classical logistic regression (LR) model 
to classify MetS and select influential variables that predict MetS. Demographics, clinical features, and common 
polymorphisms in the GCKR, BUD13, and APOA5 genes of eligible participants were assessed to classify TCGS 
participant status in MetS development. The models’ performance was evaluated by 10-repeated 10-fold cross-
validation. Various assessment measures of sensitivity, specificity, classification accuracy, and area under the receiver 
operating characteristic curve (AUC-ROC) and AUC-precision-recall (AUC-PR) curves were used to compare the 
models.
Results: During the follow-up period, 50.38% of participants developed MetS. The groups were not similar in terms of 
baseline characteristics and risk variants. MetS was significantly associated with age, gender, schooling years, body 
mass index (BMI), and alternate alleles in all the risk variants, as indicated by LR. A comparison of accuracy, AUC-
ROC, and AUC-PR metrics indicated that the regularization models outperformed LR. Regularized machine learning 
models provided comparable classification performances, whereas the aLASSO model was more parsimonious and 
selected fewer predictors. 
Conclusion: Regularized machine learning models provided more accurate and parsimonious MetS classifying 
models. These high-performing diagnostic models can lay the foundation for clinical decision support tools that use 
genetic and demographical variables to locate individuals at high risk for MetS. 
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Introduction

Metabolic syndrome (MetS) is defined as a cluster of 
interrelated risk factors that directly increases the risk of 
cardiovascular diseases (CVD), type 2 diabetes, and other 
diseases (1). The prevalence of MetS is high in the USA, 
Europe, and Asian countries, including Iran (2, 3). In Iran, 
this prevalence is estimated to be 23.8% for those 20 or 
older and 10.98% for those under 20 years old. Thus, it 

imposes a considerable burden on the Iranian population 
and health system (4).

Appropriate predictive and classification models can 
help guide the interventions that aim to battle these 
conditions and their consequent complications and 
reduce their burden. In applying diagnostic models 
for MetS, two main aspects of prediction accuracy 
should be taken into consideration: i. The selection 
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of appropriate features and ii. Choice of classification 
algorithms (5). Different demographic and clinical 
characteristics can be used in MetS classification 
models. Family and twin research has shown that 
the components of MetS are inherited, and often 
occur together; this suggests a substantial genetic 
influence for the development of MetS. Heritability 
estimates for each MetS component are greater than 
50%. Therefore, genetics play a significant role in 
predisposing individuals to its development. One 
potential application of this understanding is the use 
of genetic risk predictors to enhance the performance 
of diagnostic tools for multifactorial disorders (6).

The GCKR gene encodes glucokinase regulatory 
protein, an inhibitor of the glucose-metabolizing 
enzyme glucokinase. Glucokinase is responsible for 
regulating the uptake and storage of dietary glucose. A 
functional change in the glucokinase regulatory protein 
may considerably influence glucose metabolism (7). It 
has been demonstrated that rs1260326 is a functional 
variant that encodes a glucokinase regulatory protein 
(P446L-GKRP) which binds weakly to glucokinase 
at low glucose levels and indirectly results in 
increased glycolytic enzyme glucokinase (GCK) 
activity; also rs780094 and rs780093 are in linkage 
disequilibrium with this functional variant in different 
populations, including participants of the Tehran 
Cardiometabolic Genetic Study (TCGS) (8, 9). Two 
variants (rs780094-T and rs1260326-T) of GCKR are 
associated with enhanced glycolysis and lipogenesis 
(10). The association between the T allele of these 
common GCKR gene variants and an increased risk of 
MetS could be due to the relationship between these 
variants and elevated triglyceride (TG) levels, as a 
component of MetS (9).

Elevated TG levels also play a key role in the relationship 
between MetS and the APOA5 and BUD13 variants (11). 
Lipoprotein lipase activator, APOA5 protein, reduces 
very low-density lipoprotein synthesis and increases the 
absorption of lipoprotein remnants and insulin secretion 
in the liver. APOA5 is also associated with lower levels 
of free fatty acids and increased TG production (12). 
The BUD13 and APOA5 genes encode proteins in the 
APOA5 protein pathway. It has been hypothesized 
that the APOA5 protein’s function can be altered by 
interactions with BUD13 and ZPR1 variants, which lead 
to elevated TG levels (13). Investigations in various 
populations, including European and Asian populations, 
have confirmed a correlation between the APOA5 and 
BUD13 variants and TG levels (14). These studies mainly 
focused on investigating the relationship between single 
nucleotide polymorphisms (SNPs) and MetS. Adding 
these variants to MetS classification models can boost 
their performance.

In addition, a proper classification model should be 
chosen. A traditional statistical model, like logistic 
regression (LR), is frequently used for classification 
tasks. However, LR is neither applicable nor suitable 

for classification tasks on correlated features and high-
dimensional datasets. Recently, there has been an 
increasing interest in the use of regularized machine 
learning approaches to overcome these limitations (15)
and also for triglycerides as local interactions within the 
11q23.3 region (replicated significantly in NFBC1966. 
The most common regularization methods for feature 
selection tasks are the least absolute shrinkage and 
selection operator (LASSO), ridge regression (RR), 
elastic-net (ENET), adaptive LASSO (aLASSO), and 
adaptive ENET (aENET).

Therefore, we aim to compare regularized machine 
learning methods in feature selection and accurately 
classify MetS using demographic and clinical features 
of participants of the TCGS and their status in terms 
of selected variants of the GCKR, BUD13, and APOA5 
genes.

Materials and Methods
Design, setting, and participants

Participants for the current cohort study were selected 
from individuals who participated in the TCGS. The 
TCGS is a large population-based cohort study that has 
examined participants approximately every three years 
since 1999 in a family-based longitudinal framework. For 
this purpose, 15,005 participants of the first phase have 
been followed for more than 20 years in an attempt to 
monitor risk factors associated with non-communicable 
diseases to provide personalized medicine and the 
opportunity to present a patient-specific prevention plan 
before the onset of clinical symptoms. Details of this 
study protocol are available elsewhere (16). Of 15,005 
individuals recruited to participate in TLGS from 1999 
and who were followed up to 2017, 14,875 were selected 
to be part of TCGS  (17).

For this study, individuals over 18 years of age who 
were not diagnosed with MetS during the first phase 
of the cohort were recruited. All participants with 
at least one follow-up measurement were included. 
Ultimately, 4,546 people (2,346 cases and 2,203 
controls) were deemed eligible to be included in our 
analysis. Figure 1 presents a detailed flowchart of the 
patient recruitment.

The Ethics Committee of Tarbiat Modares University, 
Tehran, Iran approved this study (IR.MODARES.
REC.1399.153). The Ethics Committee at Research 
Institute for Endocrine Sciences, Shahid Beheshti 
University of Medical Sciences, Tehran, Iran approved 
the design and conduct for all stages of the TCGS project. 
In each phase, all participants signed written informed 
consents.

Clinical and laboratory measurements

Demographic and clinical data that included age, 
gender, schooling years, physical activity, smoking status, 
marital status, and medication usage were collected 
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using certified questionnaires. Trained personnel took 
anthropometric measurements including weight, height, 
hip circumference, and waist circumference (WC). Details 
regarding anthropometric measurements and the collection 
of venous blood samples are available elsewhere (16). 
Enzymatic calorimetry (Pars Azmoun, Iran) was used for 
fasting blood sugar (FBS), TG, total blood cholesterol, 
and high-density lipoprotein cholesterol (HDL-C) levels. 
The variation (CV) coefficient range for TG, TC, FBS, 
and HDL-C was calculated at less than 5%. Friedwald’s 
equation was used to calculate ow-density lipoprotein 
(LDL) cholesterol levels.

Outcome definition
Healthy (control) and unhealthy (case) participants 

were defined according to the definition provided 

by the Joint Interim Statement (JIS) criteria (18). 
According to the JIS committee, individuals have 
MetS if they had three or more of the following risk 
factors:   i. Hypertension defined as a diastolic blood 
pressure ≥85 mmHg and systolic blood pressure ≥130 
mmHg or use of antihypertensive medications, ii. 
Low HDL-C levels <40 mg/dL for males and <50 mg/
dL for females while fasting or use of lipid-lowering 
medications, iii. High levels of fasting serum TG 
(≥150 mg/dL) or use of medications for TG, iv. High 
levels of fasting plasma glucose (≥100 mg/dL) or use 
of diabetes medications. v. Central obesity, which 
was defined as a WC of ≥90 cm for both genders, 
according to the Iranian National Committee of 
Obesity guidelines (19). Individuals who were not 
diagnosed with MetS during any of the six phases of 
TCGS comprised the control group.

Fig.1: Flowchart of the study selection process. The term “new participants” refers to individuals who enrolled in the study at different phases of this 
study and were not present during the earlier phases. TCGS; Tehran Cardiometabolic Genetic Study.
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Genotyping and single nucleotide polymorphisms 
selection

The standard proteinase K/salting-out approach was 
used to extract genomic DNA samples from the venous 
blood samples’ buffy-coat. The quality and quantity 
of each DNA sample were evaluated using a Thermo 
Scientific NanoDrop 1000 Spectrophotometer. Samples 
with low quality and concentration (DNA purification 
in the range of 1.7<A260/A280<2) were omitted. 
DNA samples of TCGS participants were genotyped at 
the deCODE Genetics, Inc. (Reykjavik, Iceland) with 
HumanOmniExpress-24-v1-0 bead chips that contained 
649 932 SNP loci with an average mean distance of 4 kb, and 
according to the manufacturer’s specifications (Illumina, 
Inc., San Diego, CA, USA). Allele frequency, divergence 
from Hardy-Weinberg equilibrium (HWE) in the control 
group, and individual-level missingness were verified 
using PLINK (version 1.9) (20)  before the association 
analysis was performed. Seven SNPs located on the GCKR 
(rs780094, rs1260326, and 780093), BUD13 (rs12292921, 
rs180326), and APOA5 (rs651821, rs2266788) genes were 
selected based on a demonstrated strong association with 
MetS in the TCGS population (9, 11).

Statistical analysis

Descriptive data statistics were expressed as 
mean ± standard deviation (SD) for continuous variables 
and frequencies (percent) for categorical variables. 
Differences between the MetS and non-MetS groups by 
the study covariates and genotypes for both responders 
and non-responders by sex were calculated using the 
Student’s t test or chi-square test. 

The additive LR model was used to assess the 
association between MetS with candidate SNPs 
(selected variants of the GCKR, BUD13, and APOA5) 
considering the covariates of age, gender, body mass 
index (BMI), schooling years, physical activity, 
smoking status, and marital status. In the additive 
model, the BB, Bb, and bb genotypes were recoded 
to 0, 1, and 2, respectively. For feature selection and 
MetS classification, LR was performed through the 
forward stepwise method. 

We applied regularized LR (RLR) to select relevant 
features for MetS classification and prediction models. 
RLR models avoid the overfitting problem by penalizing 
the model complexity and adding a nonnegative 
regularization term to the log-likelihood function, 
consequently, shrinking the values of regression 
coefficients (21, 22). This study used a 10-fold cross-
validation method to select the optimal λ value for our 
models. We took into consideration several regularization 
terms that have been previously proposed (21-25) and 
applied five popular regularized machine learning 
models to select relevant features for MetS prediction 
models, including the LASSO (21), RR (23), ENET (25), 
aLASSO (24), and aENET. A detailed explanation of the 
regularization methods and their features was added in the 

supplementary material and Table S1 (See Supplementary 
Online Information at www.celljournal.org).

Evaluation method

A 10-repeated 10-fold cross-validation method was 
used to evaluate the performance of the models. This 
method splits the data into ten randomly selected 
subsets. Each subset of 10% (testing set) is used to 
assess the model exclusively trained on the remaining 
90% of individuals (training set). The data sample is 
shuffled in each repetition, which results in a different 
set of sample data after each split. The performance 
metrics gathered from ten repeated cross-validations 
are then averaged to calculate the overall model 
performance metrics. The main advantage of applying 
this procedure in assessing model performance is that it 
reduces the performance estimates variance (26). The 
proportion of cases and controls in each subset was 
maintained equal to the primary sample proportion, 
so each subset’s status could represent the underlying 
population’s status. 

Performance metrics of sensitivity, specificity, 
classification accuracy, and the area under the receiver 
operating characteristic curve (AUC-ROC) are shown 
in Figure S1 (See Supplementary Online Information at 
www.celljournal.org) and the area under the precision-
recall curve (AUC-PR) in Figure S2 (See Supplementary 
Online Information at www.celljournal.org). Finally, the 
Delong test was used to compare the AUC-ROC values of 
the different regression models (27). We used R version 
4.0.2  for implementing the mentioned methods, along 
with the packages "glmnet", "caret", "msaenet", "pROC ", 
and "PRROC " (28-32). All the analyses were considered 
at a 0.05 level of significance.

Results
Study population characteristics

Out of the total 4546 participants in the study, 54.16% 
were females. A total of 2343 (50.38%) of the TCGS 
adult participants had MetS. The mean BMI for patients 
with MetS was 27.07 ± 4.15 kg/m2, which indicated that 
MetS patients were generally overweight. The majority of 
participants (53.32%) had never smoked. Table 1 shows 
the baseline features of participants 

The genotype distribution of all seven SNPs in 
the control subjects was in HWE (P>0.05).  Table 2 
displays the baseline characteristics and common SNPs 
of the GCKR, BUD13, and APOA5 genotypes for both 
responders and non-responders by gender. Based on the 
results, the number of women in both responders and non-
responders was more than men. There were no significant 
differences (P>0.05) between the TCGS responders and 
non-responders in both males and females (P>0.05) unless 
patterns of smoking (P<0.05), marital status (P<0.05), and 
BUD13 and APOA5 variant distributions were observed 
in both women and men.
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Table 1: Comparison of baseline characteristics and common SNPs of the GCKR, BUD13, and APOA5 genotypes of MetS in healthy control and unhealthy groups

Variables Unhealthy (MetS) Healthy (Non-MetS) P value Test statistic

Group size 2343 (50.38) 2203 (49.62)

Age (Y) 40.33 ± 12.92 33.16 ± 12.47 <0.001 19.01‡

Schooling years 9.20 ± 4.35 10.44 ± 4.63 <0.001 9.310‡

BMI (kg/m2) 27.07 ± 4.15 23.82 ± 3.94 <0.001 27.04‡

Physical activity 587 ± 370 459 ± 115 <0.001 15.54‡

Sex <0.001 112.28§

Male 1252 (53.4) 832 (37.8)

Female 1091 (46.6) 1371 (62.2)

Smoking status <0.001 39.55§

Never smoked 1175 (50.15) 1249 (56.7)

Former smoker 151 (6.44) 73 (3.31)

Current smoker 345 (14.72) 258 (11.71)

Second-hand 672 (28.68) 623 (28.28)

Marital status <0.001 148.6§

 Divorced 24 (1) 19 (0.9)

 Married 1946 (83.1) 1549 (70.3)

 Single 314 (13.4) 609 (27.6)

 Widowed 59 (2.5) 26 (1.2)

GCKR

rs1260326 0.035 6.675§

CC 662 (28.3) 689 (31.3)

TC 1134 (48.4) 1054 (47.8)

TT 547 (23.3) 460 (20.9)

rs780094 0.028 7.157§

CC 672 (28.7) 706 (32)

TC 1138 (48.6) 1045 (47.4)

TT 533 (22.7) 452 (20.5)

rs780093 0.005 10.46§

CC 666 (28.4) 693 (31.5)

TC 1125 (48) 1072 (48.7)

TT 552 (23.6) 438 (19.9)

BUD13

rs12292921 0.128 4.058§

GG 20 (0.9) 12 (0.5)

GT 311 (13.3) 259 (11.8)

TT 2012 (85.9) 1932 (87.7)

rs180326 0.016 8.324§

GG 451 (19.2) 408 (18.5)

GT 1211 (51.7) 1068 (48.5)

TT 681 (29.1) 727 (33)

APOA5

rs651821 0.006 10.25§

TT 1626 (69.4) 1614 (73.3)

CT 649 (27.7) 546 (24.8)

CC 68 (2.9) 43 (2)

rs2266788 0.007 9.722§

GG 54 (2.3) 32 (1.5)

GA 584 (24.9) 490 (22.2)

AA 1705 (72.8) 1681 (76.3)

Significant differences were observed in SNP information of GCKR, BUD13, and APOA5 genotypes, and independent variables between healthy and 
unhealthy participants. Data are presented as mean ± SD or n (%). ‡; Student’s t test, §; Chi-square test, SNP; Single nucleotide polymorphisms, MetS; 
Metabolic syndrome, BMI; Body mass index, and SD; Standard deviation. 
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Table 2: Comparison of baseline characteristics and GCKR, BUD13, APOA5 genotype of study participants and non-responders

Variables Male Female

Responders Non-responders P value Test statistic Responders Non-responders P value Test statistic

Group size 2084 (71.51) 830 (28.48) 2462 (67.17) 1203 (32.82) 

Age (Y) 39.44 ± 14.59 41.48 ± 15.31 <0.001 3.358‡ 34.67 ± 11.45 37.06 ± 14.6 <0.001 5.404‡

Schooling years 10.03 ± 4.66 9.91 ± 4.41 0.582 0.636‡ 9.60 ± 4.41 9.32 ± 4.36 0.0701 1.811‡

BMI (Kg/m2) 24.87 ± 3.88 25.12 ± 4.38 0.025 1.511‡ 26.02 ± 4.68 26.63 ± 4.92 <0.001 3.643‡

Physical activity 622 ± 108 524.49 ± 101.92 0.05 22.34‡ 443 ± 293 384.48 ± 182.76 <0.001 6.349‡

Smoking status 0.152 5.283§ 0.0646 7.238§

   Never smoked 775 (37.19) 283 (38.34) 1649 (66.98) 717 (59.60) 

   Former smoker 209 (10.03) 88 (11.92) 15 (0.61) 13 (1.08) 

   Current smoker 537(25.77) 196 (26.56) 66 (2.68) 35 (2.91) 

   Second-hand 563(27.02) 171 (23.17) 732 (29.73) 371 (30.84) 

Marital status 0.200 4.637§ <0.001 28.62§

   Divorced 10 (0.5) 1(0.05) 33 (1.3) 18 (1.50) 

   Married 1579 (75.8) 649(29.99) 1916 (77.8) 954 (79.30) 

   Single 491 (23.6) 176 (8.13) 432 (17.5) 155 (12.88) 

   Widowed 4 (0.2) 3 (0.14) 81 (3.3) 76 (6.32) 

GCKR

rs1260326 0.218 3.04§ 0.581 1.083§

CC 634 (30.4) 265 (31.93) 717 (29.1) 370 (30.76) 

TC 987 (46.9) 402 (48.43) 1210 (49.1) 574 (47.71) 

TT 472 (22.6) 163 (49.64) 535 (21.7) 259 (21.53) 

rs780094 0.290 2.472§ 0.959 0.083§

CC 643 (30.9) 251 (30.24) 735 (29.9) 358 (29.76) 

TC 980 (47) 414 (49.88) 1203 (48.9) 584 (48.55) 

TT 461 (22.1) 165 (19.88) 524 (21.3) 261 (21.70) 

rs780093 0.192 3.297§ 0.053 5.855§

CC 643 (30.9) 179 (21.57) 716 (29.1) 280 (23.28) 

TC 975 (46.8) 315 (37.95) 1222 (49.6) 404 (33.58) 

TT 466 (22.4) 125 (15.06) 524 (21.3) 214 (17.79) 

BUD13

rs12292921 0.369 0.831§ <0.001 34.24§

GG 19 (0.9) 9 (1.08) 13 (0.5) 8 (0.67) 

GT 257 (12.3) 107 (12.89) 313 (12.7) 241 (20.03) 

TT 1808 (86.8) 714 (86.02) 2136 (86.8) 954 (79.30) 

rs180326 <0.001 31.88§ <0.001 30.75§

GG 405 (19.4) 108 (13.01) 454 (18.4) 154 (12.80) 

GT 1055 (50.6) 512 (61.69) 1224 (49.7) 706 (58.69) 

TT 624 (29.9) 210 (25.30) 784 (31.8) 343 (28.51) 

APOA5

rs651821 <0.001 22.06§ 0.799 0.448§

TT 1490 (71.5) 663 (79.88) 1750 (71.1) 863 (71.74) 

CT 541 (26) 149 (17.95) 654 (26.6) 309 (25.69) 

CC 53 (2.5) 18 (2.17) 58 (2.4) 31 (2.58) 

rs2266788 0.004 11.09§ <0.001 2407.93§

GG 40 (1.9) 21 (2.53) 46 (1.9) 863 (71.74) 

GA 482 (23.1) 237 (28.55) 592 (24) 309 (25.69) 

AA 1562 (75) 572 (68.92) 1824 (74.1) 31 (2.58) 

There were no significant differences between responders and non-responders in males and females other than higher BMI in male non-responders and different 
smoking and marital status distribution between female responders and non-responders. Significant differences between distribution of the BUD13 and APOA5 
variants were observed between responders and non-responders in both genders. Data are presented as mean ± SD or n (%). ‡; Student’s t test, §; chi-square test, 
SD; Standard deviation, BMI; Body mass index. Student’s t test for quantitative variables and chi-square test for categorical variables were applied.
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Feature selection
Table 3 lists the subset of features selected for each of the six 

assessed models: LASSO, ridge, ENET, aLASSO, aENET, 
and LR. aLASSO produced the most parsimonious model 
with six features: BMI, marital status, and gene variants of 
GCKR (rs780093), BUD13 (rs12292921), as well as gene 
variants of APOA5 (rs651821 and rs2266788). Features 
whose coefficients have a larger absolute value have a more 
significant effect on predicting MetS. Likewise, lower values 
show less influence on prediction. BMI had a large effect, 
despite being selected by all models. LR analysis revealed 
that males were 0.14 times less  at risk for development of 
MetS than females. Increased number of school attendance 
years had a significant inverse relationship with the odds 
of developing MetS (OR=0.02). In contrast, variants of the 
BUD13 (rs12292921, rs180326) and GCKR (rs780094, 
rs780093) genes, gender, and BMI strongly affected MetS. 
Analysis of GCKR polymorphisms (rs780094, rs1260326, 
and rs780093) demonstrated a significant association of 
MetS with rs780093. This relationship can be attributed to 
the higher frequency of minor T alleles in patients affected 
by MetS. Similarly, BUD13 polymorphisms, specifically 
rs12292921 and rs180326, exhibited a significant association 
with MetS. Patients with MetS have a greater prevalence of 
minor G alleles, which is the leading cause of this relationship. 
Analysis of APOA5 polymorphisms revealed an association 
of MetS with rs651821 and rs2266788. The presence of 
minor C alleles of rs651821 and minor G alleles rs2266788 
were found to be significantly more frequent in MetS patients 
than in healthy individuals.

Predictive performance

Figure 2 provides an overview of the classification 
performance achieved by regularized and classic LR 
techniques. The evaluation is based on the mean value obtained 
from conducting a 10-repeat 10-fold cross-validation method. 
The results show that regularization methods outperformed 
the LR model based on several metrics (Fig.2). 

Overall, the aENET showed higher classification accuracy 
(mean=0.748) and sensitivity (mean=0.763), which was very 
similar to aLASSO. Figures S1 and S2 (See Supplementary 
Online Information at www.celljournal.org) show the AUC-
ROC and AUC-PR curves of the models. The classification 
accuracy is the most exact and simplest measure of model 
performance and it showed the highest values for the aLASSO 
and aENET models. AUC-ROC and AUC-PR summarize 
the trade-off between sensitivity and specificity or precision 
and recall at different probability thresholds, respectively. 
Based on these indices the aENET model is the exact model 
for the classification of individuals. aLASSO gave parsimony 
results.

We used the Delong et al. (27) method to compare the six 
calculated AUCs. The results of the pairwise comparison 
are shown in Table 4. All five regularization machine 
learning models outperformed LR, and we confirmed 
there were no differences between the regularization 
models. In contrast, we observed significant differences 
between the AUCs of the regularized and classic LR 
models (P<0.05).

Table 3: Feature selection using different regularized machine learning and classical LR models

Variable LR LASSO Ridge ENET aLASSO aENET

Age (Y) 0.025 0.025 0.024 0.025 0.023
Gender 0.864 0.834 0.774 0.855 0.928
BMI (kg/m2) 0.222 0.168 0.188 0.210 0.013 0.214
Schooling years -0.021 -0.017 -0.018 -0.017 -0.019
Physical activity 0.0009
Marital status 0.113 0.060 0.057 0.058
Smoking status -0.013 0.019
GCKR

rs1260326 0.036 0.016 0.077
rs780094 -1.20 -0.062 -0.095
rs780093 0.093 0.012 0.182 0.141 -0.076 0.169

BUD13
rs12292921 -0.321 -0.210 -0.257 -0.224 -0.207 -0.309
rs180326 0.235 0.035 0.067 0.037 0.061

APOA5
rs651821 0.055 0.109 0.111 0.043 0.139 0.169
rs2266788 -0.051 -0.172 -0.224 -0.275 -0.053 -0.194

The coefficient of significant variables is based on the LR model and selected features using the regularized machine learning models. aLASSO was the 
parsimony model, among others. LR; Logistic regression, LASSO; Least absolute shrinkage and selection operator, ENET; Elastic-net, aENET; Adaptive ENET, 
aLASSO; Adaptive LASSO, and BMI; Body mass index. 

http://www.celljournal.org
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Fig.2: Performance metrics of the regularized machine learning models. AUC-ROC; Area under the receiver operating characteristic curve, AUC-PR; Area 
under the precision-recall curve, LR; Logistic regression, LASSO; Least absolute shrinkage and selection operator, Elastic-net; ENET, aLASSO; Adaptive 
LASSO, and aENET; Adaptive ENET, Regularized machine learning models outperform the LR model.

Table 4: Pairwise comparison of receiver operating characteristic curves (ROC)

Models D statistics Significance level Models D statistics Significance level 

(P value) (P value)

LR vs. LASSO 7.89 <0.05 0.215 0.64

LR vs. Ridge 6.59 <0.05 0.168 0.79

LR vs. ENET 7.76 <0.05 0.117 0.67

LR vs. aLASSO 7.52 <0.05 0.129 0.71

LR vs. aENET 7.67 <0.05 0.143 0.67

LASSO vs. Ridge 0.215 0.61 0.214 0.85

LASSO vs. ENET 0.131 0.89 0.210 0.63

LASSO vs. aLASSO 0.152 0.76

LASSO vs. aENET 

Ridge vs. ENET 

Ridge vs. aLASSO 

Ridge vs. aENET 

ENET vs. aLASSO 

ENET vs. aENET 

aLASSO vs. aENET 

Using the Delong et al. (27) method, we confirmed differences between LR and the regularized machine learning models. However, there were no 
discriminative differences between the regularization models. LR; Logistic regression, LASSO; Least absolute shrinkage and selection operator, aLASSO; 
Adaptive LASSO, ENET; Elastic-net, and aENET; Adaptive ENET.

Discussion
The main objective of this study was to classify MetS 

using various penalized machine learning models and LR 
in the presence of risk variants in the GCKR, BUD13 and 
APOA5  genes, and determine the crucial variables for 
the development of MetS. Regularized machine learning 
models proved parsimonious MetS predicting models 
and outperformed LR while selecting fewer features. Our 
result confirmed the superiority of regularized machine 
learning models over LR; these findings supported the 
results of a study that compared the models to characterise 

vitamin D deficiency in a hypertensive obese population 
(33). Our results were further verified by Kim et al. (34), 
who reported that LASSO LR outperformed stepwise LR 
to predict breast malignancies.

For all three models, the final selected variables were 
BMI, rs2266788, rs651821, rs12292921, and rs780093. 
The findings of previous studies that employed data 
mining and machine learning techniques to examine 
the association between MetSd and demographic and 
lifestyle factors have identified BMI as one of the 
most crucial predictors of MetS. This underscores the 
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importance of maintaining a healthy weight in preventing 
the development of MetS (35, 36).

All of the models in our study selected four functional 
variants of the GCKR (rs780093), BUD13 (rs12292921), 
and APOA5 (rs2266788, rs651821) genes as predictors of 
MetS. This result is consistent with previous studies that 
investigated the relationship between GCKR, BUD13, and 
APOA5 polymorphisms and MetS in different populations 
(11, 12, 35, 37). The results of the present study support 
our previous findings when we evaluated machine learning 
models to predict MetS in the presence of GCKR risk 
variants (35). Some of the regularized methods selected 
three other SNPs. However, not chosen as a significant 
predictor of an outcome does not necessarily negate the 
biological or clinical importance of a specific exposure 
variable or its causal significance (38).

aENET and aLASSO provided higher performance 
measures, but this difference was not significant 
compared to other regularized machine learning 
models. On the other hand, the aLASSO model was the 
most parsimonious, with the least number of selected 
features. This finding can have substantial clinical 
importance. High-performing models built on fewer 
variables are easier to interpret and more practical 
because of the typical time constraints that impede 
gathering patient data in most clinical settings. Due to 
their comparable performance with different feature 
sets, each of these five regularized machine learning 
models can have practical advantages. With only six 
predictors, the aLASSO is the most advantageous. 

The current study has several advantages compared 
to other studies to classify MetS. First, we used our 
models on a relatively large sample that represented 
its underlying population. Our feature set comprised 
genetic and environmental risk factors that properly 
captured the multifactorial nature of MetS and 
maintained clinical intelligibility and practicality 
throughout the research design and implementation. 
More complicated modelling techniques were avoided 
and not considered to be a shortcoming of this effort. 
Although other classification methods, particularly 
those based on machine learning algorithms like support 
vector machines or random forest, might perform better 
than regularized machine learning methods on the 
same data sets (35, 39), it is important to remember 
that these high-performing methods might not be easily 
implemented in many clinical settings.

In terms of clinical issues, a high-precision model with 
fewer variables to predict individuals’ status is valuable 
because of the time constraints with obtaining patient 
information. The utility of the regularized machine 
learning models was demonstrated based on the results 
and the models’ performance parameter estimation. It 
is important to acknowledge that the findings of this 
study may not be applicable to other populations due to 
potential differences in demographics, cultural norms, 
and environmental factors. Therefore, caution should be 

exercised when attempting to generalize these results to 
other populations.

Conclusion
In order to maximize the potential impact of public health 

interventions in reducing the burden of prevalent diseases 
like MetS, it is critical to focus resources on people who 
are at a higher risk for developing these diseases or who 
already are afflicted. Conventional statistical models tend 
to be unreliable when predicting multifactorial disorders 
that have numerous potential independent environmental 
and genetic risk factors. In contrast, modern machine 
learning algorithms such as penalized regressions can 
significantly improve predictive accuracy in clinical 
matters compared to conventional models. In this study, 
we compared prediction models for MetS by using 
demographic, lifestyle, and genetic data (risk variants of 
GCKR, BUD13, and APOA5 genes) from TCGS patients. 
Our findings indicate that penalized machine learning 
models, specifically aENET and aLASSO, can provide 
highly effective MetS prediction models. These models 
can play a crucial role in preventing future CVD, cancers, 
or other related complications if they are integrated with 
decision support tools or used in future research.

This work was the first step to apply the risk score as 
a modern method for disease prediction. The key focus 
in the TCGS is to identify the best prediction model(s) 
for various diseases, particularly MetS, which is a 
complex disorder caused by multiple factors. In order to 
achieve this goal, we tested penalized machine learning 
techniques and compared them to LR model on known 
genes within our database in an attempt to compare their 
predictive abilities.
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