Expression of Long Non-Coding RNA H19 in Acute Lymphoblastic Leukemia

Document Type : Original Article


1 Hematology Department, School of Allied Medicine, Tehran University of Medical Science, Tehran, Iran

2 Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

3 Division of Hematology and Oncology, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Science, Tehran, Iran


Long non-coding RNA (lncRNA) H19 has essential roles in growth, migration, invasion, and metastasis of
most cancers. H19 dysregulation is present in a large number of solid tumors and leukemia. However, the expression
level of H19 in acute lymphoblastic leukemia (ALL) has not been elucidated yet. The current study aimed to explore
H19 expression in ALL patients and cell lines.

Materials and Methods:
This experimental study was conducted in bone marrow (BM) samples collected from 25
patients with newly diagnosed ALL. In addition, we cultured the RPMI-8402, Jurkat, Ramos, and Daudi cell lines
and assessed the effects of internal (hypoxia) and external (chemotherapy medications L-asparaginase [ASP] and
vincristine [VCR]) factors on h19 expression. The expressions of H19, P53, c-Myc, HIF-1α and β-actin were performed
using quantitative real-time polymerase chain reaction (qRT-PCR) method.

There was significantly increased H19 expression in the B-cell ALL (B-ALL, P<0.05), T-cell ALL (T-ALL,
P<0.01) patients and the cell lines. This upregulation was governed by the P53, HIF-1α, and c-Myc transcription
factors. We observed that increased c-Myc expression induced H19 expression; however, P53 adversely affected H19
expression. In addition, the results indicated that chemotherapy changed the gene expression pattern. There was a
considerable decrease in H19 expression after exposure to chemotherapy medications; nonetheless, hypoxia induced
H19 expression through P53 downregulation.

Our findings suggest that H19 may have an important role in pathogenesis in ALL and may act as a
promising and potential therapeutic target.


1. Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. 2016; 66(4): 271-289.
2. Hulleman E, Kazemier KM, Holleman A, VanderWeele DJ, Rudin CM, Broekhuis MJ, et al. Inhibition of glycolysis modulates prednisolone resistance in acute lymphoblastic leukemia cells. Blood. 2009; 113(9): 2014-2021.
3. Kang MH, Kang YH, Szymanska B, Wilczynska-Kalak U, Sheard MA, Harned TM, et al. Activity of vincristine, L-ASP, and dexamethasone against acute lymphoblastic leukemia is enhanced by the BH3-mimetic ABT-737 in vitro and in vivo. Blood. 2007; 110(6): 2057-2066.
4. Angrand PO, Vennin C, Le Bourhis X, Adriaenssens E. The role of long non-coding RNAs in genome formatting and expression. Front Genet. 2015; 6: 165.
5. Bhan A, Soleimani M,Mandal SS. Long noncoding RNA and cancer: a new paradigm. Cancer Res. 2017; 77(15): 3965-3981.
6. Ernst C, Morton CC. Identification and function of long non-coding RNA. Front Cell Neurosci. 2013; 7: 168.
7. Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell. 2018; 172(3): 393-407.
8. Raveh E, Matouk IJ, Gilon M, Hochberg A. The H19 Long noncoding RNA in cancer initiation, progression and metastasis–a proposed unifying theory. Mol Cancer. 2015; 14(1): 184.
9. Yoshimura H, Matsuda Y, Yamamoto M, Kamiya S, Ishiwata T. Expression and role of long non-coding RNA H19 in carcinogenesis. Front Biosci (Landmark Ed). 2018; 23: 614-625.
10. Zhang EB, Han L, Yin DD, Kong R, De W, Chen J. c-Myc-induced, long, noncoding H19 affects cell proliferation and predicts a poor prognosis in patients with gastric cancer. Med Oncol. 2014; 31(5): 914.
11. Yoshimura H, Matsuda Y, Suzuki T, Naito Z,Ishiwata T. Long noncoding RNA H19 as a novel therapeutic target for pancreatic cancer. Cancer Res. 2014; 74 Suppl 19: 5203.
12. Chi Y, Wang D, Wang J, Yu W, Yang J. Long non-coding RNA in the pathogenesis of cancers. Cells. 2019; 8(9): 1015.
13. Li Y, Ma HY, Hu XW, Qu YY, Wen X, Zhang Y, et al. LncRNA H19 promotes triple-negative breast cancer cells invasion and metastasis through the p53/TNFAIP8 pathway. Cancer Cell Int. 2020; 20: 200.
14. Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer. 2018; 18(1): 5-18.
15. Yoshimizu T, Miroglio A, Ripoche MA, Gabory A, Vernucci M, Riccio A, et al. The H19 locus acts in vivo as a tumor suppressor. Proc Natl Acad Sci USA. 2008; 105(34): 12417-12422.
16. Cerk S, Schwarzenbacher D, Adiprasito JB, Stotz M, Hutterer GC, Gerger A, et al. Current status of long non-coding RNAs in human breast cancer. Int J Mol Sci. 2016; 17(9): 1485.
17. Lottin S, Adriaenssens E, Dupressoir T, Berteaux N, Montpellier C, Coll J, et al. Overexpression of an ectopic H19 gene enhances the tumorigenic properties of breast cancer cells. Carcinogenesis. 2002; 23(11): 1885-1895.
18. Qi P, Du X. The long non-coding RNAs, a new cancer diagnostic and therapeutic gold mine. Mod Pathol. 2013; 26(2): 155-165.
19. Tanos V, Ariel I, Prus D, De-Groot N, Hochberg A. H19 and IGF2 gene expression in human normal, hyperplastic, and malignant endometrium. Int J Gynecol Cancer. 2004; 14(3): 521-525.
20. Guo G, Kang Q, Chen Q, Chen Z, Wang J, Tan L, et al. High expression of long non-coding RNA H19 is required for efficient tumorigenesis induced by Bcr-Abl oncogene. FEBS lett. 2014; 588(9): 1780-1786.
21. Morlando M, Ballarino M, Fatica A. Long non-coding RNAs: new players in hematopoiesis and leukemia. Front Med (Lausanne). 2015; 2: 23.
22. Zhang Tj, Zhou Jd, Zhang W, Lin J, Ma Jc, Wen Xm, et al. H19 overexpression promotes leukemogenesis and predicts unfavorable prognosis in acute myeloid leukemia. Clin Epigenetics. 2018; 10(1): 47.
23. Lim YW, Xiang X, Garg M, Le MT, Wong A L-A, Wang L, et al. The double-edged sword of H19 lncRNA: Insights into cancer therapy. Cancer Lett. 2021; 500: 253-262.
24. Arun G, Diermeier SD,Spector DL. Therapeutic targeting of long non-coding RNAs in cancer. Trends Mol Med. 2018; 24(3): 257-277.
25. Matouk IJ, DeGroot N, Mezan S, Ayesh S, Abu-lail R, Hochberg A, et al. The H19 non-coding RNA is essential for human tumor growth. PLoS One. 2007; 2(9): e845.
26. Huang J, Zhang A, Ho TT, Zhang Z, Zhou N, Ding X, et al. Linc- RoR promotes c-Myc expression through hnRNP I and AUF1. Nucleic Acids Res. 2016; 44(7): 3059-3069.
27. Li Y, Sasaki H. Genomic imprinting in mammals: its life cycle, molecular mechanisms and reprogramming. Cell Res. 2011; 21(3): 466-473.
28. Dugimont T, Montpellier C, Adriaenssens E, Lottin S, Dumont L, Iotsova V, et al. The H19 TATA-less promoter is efficiently repressed by wild-type tumor suppressor gene product p53. Oncogene. 1998; 16(18): 2395-2401.
29. Liu C, Chen Z, Fang J, Xu A, Zhang W, Wang Z. H19-derived miR-675 contributes to bladder cancer cell proliferation by regulating p53 activation. Tumour Biol. 2016; 37(1): 263-270.
30. Park IY, Sohn BH, Choo JH, Joe CO, Seong JK, Lee YI, et al. Deregulation of DNA methyltransferases and loss of parental methylation at the insulin-like growth factor II (Igf2)/H19 loci in p53 knockout mice prior to tumor development. J Cell Biochem. 2005; 94(3): 585-596.
31. Petit C, Gouel F, Dubus I, Heuclin C, Roget K,Vannier J. Hypoxia promotes chemoresistance in acute lymphoblastic leukemia celllines by modulating death signaling pathways. BMC Cancer. 2016; 16(1): 746.
32. Wilson WR, Hay MP. Targeting hypoxia in cancer therapy. Nat Rev Cancer. 2011; 11(6): 393-410.
33. Frolova O, Samudio I, Benito JM, Jacamo R, Kornblau SM, Markovic A, et al. Regulation of HIF-1α signaling and chemoresistance in acute lymphocytic leukemia under hypoxic conditions of the bone marrow microenvironment. Cancer Biol Ther. 2012; 13(10): 858-870.
34. Luo M, Li Z, Wang W, Zeng Y, Liu Z, Qiu J. Upregulated H19 contributes to bladder cancer cell proliferation by regulating ID2 expression. FEBS J. 2013; 280(7): 1709-1716.
35. Matouk IJ, Mezan S, Mizrahi A, Ohana P, Abu-lail R, Fellig Y, et al. The oncofetal H19 RNA connection: hypoxia, p53 and cancer. Biochim Biophys Acta. 2010; 1803(4): 443-451.
36. Fahy L, Calvo J, Chabi S, Renou L, Le Maout C, Poglio S, et al. Hypoxia favors chemoresistance in T-ALL through an HIF1α-mediated mTORC1 inhibition loop. Blood Adv. 2021; 5(2): 513-526.
37. Yang F, Bi J, Xue X, Zheng L, Zhi K, Hua J, et al. Up-regulated long non-coding RNA H19 contributes to proliferation of gastric cancer cells. FEBS J. 2012; 279(17): 3159-3165.
38. Houghton PJ, Lock R, Carol H, Morton CL, Phelps D, Gorlick R, et al. Initial testing of the hypoxia-activated prodrug PR-104 by the pediatric preclinical testing program. Pediatr Blood Cancer. 2011; 57(3): 443-453.
39. Deynoux M, Sunter N, Hérault O, Mazurier F. Hypoxia and hypoxiainducible factors in leukemias. Front Oncol. 2016; 6: 41.