MiRNA-16-1 Suppresses Mcl-1 and Bcl-2 and Sensitizes Chronic Lymphocytic Leukemia Cells to BH3 Mimetic ABT-199

Document Type : Original Article


1 Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran

2 Department of Parasitology and Mycology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran

3 Department of Anatomy, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran


Objective: Chronic lymphoid leukemia (CLL) is the most common type of leukemia among adults. Increased levels of Mcl-1 and Bcl-xL is linked to resistance to Bcl-2 inhibitors including ABT-199. In this study, we investigated the effect of miRNA-16-1 on apoptosis and sensitivity of the CLL cells to ABT-199.
Materials and Methods: In this experimental study, the Mcl-1 and Bcl-2 expression were measured using qualitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blotting. The effect of treatments on cell survival and growth were explored with MTT assay and Trypan blue assay, respectively. The drug interaction was evaluated using combination index analysis. Apoptosis was assessed by ELISA cell death and caspase-3 activity assays.
Results: MiRNA-16-1 markedly inhibited the expression of Mcl-1 and Bcl-2 in a time dependent manner (P<0.05, relative
to blank control). Pretreatment with miRNA-16-1 synergistically suppressed the cell growth and survival and reduced the half-maximal inhibitory concentration (IC50) value of ABT-199. Moreover, miRNA-16-1 markedly augmented the apoptotic effect of ABT-199 in CLL cells (P<0.05).
Conclusion: Our findings propose that miRNA-16-1 act in concert with ABT-199 to exert synergistic anticancer efficacy against CLL, which is attributed to the inhibition of Bcl-2 and Mcl-1. This may propose a promising strategy for CLL resistant patients.


1. Danilov AV. Targeted therapy in chronic lymphocytic leukemia: past, present, and future. Clin Ther. 2013; 35(9): 1258-1270.
2. Khan M, Siddiqi T. Targeted therapies in CLL: monotherapy versus combination approaches. Curr Hematol Malig Rep. 2018; 13(6): 525-533.
3. Chen R, Plunkett W. Strategy to induce apoptosis and circumvent resistance in chronic lymphocytic leukaemia. Best Pract Res Clin Haematol. 2010; 23(1): 155-166.
4. Hertlein E, Byrd JC. Signalling to drug resistance in CLL. Best Pract Res Clin Haematol. 2010; 23(1): 121-131.
5. Masood A, Shahshahan MA, Jazirehi AR. Novel approaches to modulate apoptosis resistance: basic and clinical implications in the treatment of chronic lymphocytic leukemia (CLL). Curr Drug Deliv. 2012; 9(1): 30-40.
6. Nana-Sinkam SP,Croce C M. MicroRNA in chronic lymphocytic leukemia: transitioning from laboratory-based investigation to clinical application. Cancer Genet Cytogenet. 2010; 203(2): 127-133.
7. Arnason JE, Brown JR. Targeted therapy for chronic lymphocytic leukemia: current status and future directions. Drugs. 2015; 75(2): 143-155.
8. Billard C. Design of novel BH3 mimetics for the treatment of chronic lymphocytic leukemia. Leukemia. 2012; 26(9): 2032-2038.
9. Fegan C, Pepper C. Apoptosis deregulation in CLL. Adv Exp Med Biol. 2013; 792: 151-171.
10. D’Rozario J, Bennett SK. Update on the role of venetoclax and rituximab in the treatment of relapsed or refractory CLL. Ther Adv Hematol. 2019; 10: 2040620719844697.
11. Lasica M, Anderson MA. Review of venetoclax in CLL, AML and multiple myeloma. J Pers Med. 2021; 11(6): 463.
12. Bojarczuk K, Sasi BK, Gobessi S, Innocenti I, Pozzato G, Laurenti L, et al. BCR signaling inhibitors differ in their ability to overcome Mcl-1-mediated resistance of CLL B cells to ABT-199. Blood. 2016; 127(25): 3192-3201.
13. Choudhary GS, Al-Harbi S, Mazumder S, Hill BT, Smith MR, Bodo J, et al. MCL-1 and BCL-xL-dependent resistance to the BCL-2 inhibitor ABT-199 can be overcome by preventing PI3K/AKT/mTOR activation in lymphoid malignancies. Cell Death Dis. 2015; 6(1): e1593.
14. Thijssen R, Slinger E, Weller K, Geest CR, Beaumont T, van Oers MH, et al. Resistance to ABT-199 induced by microenvironmental signals in chronic lymphocytic leukemia can be counteracted by CD20 antibodies or kinase inhibitors. Haematologica. 2015; 100(8): e302-306.
15. Alamdari-Palangi V, Amini R, Karami H. MiRNA-7 enhances erlotinib sensitivity of glioblastoma cells by blocking the IRS-1 and IRS-2 expression. J Pharm Pharmacol. 2020; 72(4): 531-538.
16. Alamdari-Palangi V, Karami Z, Karami H, Baazm M. MiRNA-7 replacement effect on proliferation and tarceva-sensitivity in U373-MG cell line. Asian Pac J Cancer Prev. 2020; 21(6): 1747-1753.
17. Amri J, Molaee N, Baazm M,Karami H. Targeting epidermal growth factor receptor by MiRNA-145 inhibits cell growth and sensitizes NSCLC cells to erlotinib. Asian Pac J Cancer Prev. 2019; 20(9): 2781-2787.
18. Amri J, Molaee N, Karami H. Up-Regulation of miRNA-125a-5p inhibits cell proliferation and increases EGFR-TKI induced apoptosis in lung cancer cells. Asian Pac J Cancer Prev. 2019; 20(11): 3361-3367.
19. Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M, et al. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci USA. 2008; 105(13): 5166-5171.
20. Lv M, Zhu S, Peng H, Cheng Z, Zhang G,Wang Z. B-cell acute lymphoblastic leukemia-related microRNAs: uncovering their diverse and special roles. Am J Cancer Res. 2021; 11(4): 1104-1120.
21. Mardani R, Jafari Najaf Abadi M H, Motieian M, Taghizadeh-Boroujeni S, Bayat A, Farsinezhad A, et al. MicroRNA in leukemia: tumor suppressors and oncogenes with prognostic potential. J Cell Physiol. 2019; 234(6): 8465-8486.
22. Hallek M. Chronic lymphocytic leukemia: 2020 update on diagnosis, risk stratification and treatment. Am J Hematol. 2019; 94(11): 1266-1287.
23. Lia M, Carette A, Tang H, Shen Q, Mo T, Bhagat G, et al. Functional dissection of the chromosome 13q14 tumor-suppressor locus using transgenic mouse lines. Blood. 2012; 119(13): 2981-2990.
24. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med. 2005; 353(17): 1793-1801.
25. Karami H, Baradaran B, Esfehani A, Sakhinia M, Sakhinia E. Downregulation of Mcl-1 by small interference RNA induces apoptosis and sensitizes HL-60 leukemia cells to etoposide. Asian Pac J Cancer Prev. 2014; 15(2): 629-635.
26. Shahverdi M, Amini R, Amri J, Karami H. Gene therapy with MiRNA-mediated targeting of Mcl-1 promotes the sensitivity of nonsmall cell lung cancer cells to treatment with ABT-737. Asian Pac J Cancer Prev. 2020; 21(3): 675-681.
27. Shahverdi M, Amri J, Karami H, Baazm M. Knockdown of myeloid cell leukemia-1 by microRNA-101 increases sensitivity of A549 lung cancer cells to etoposide. Iran J Med Sci. 2021; 46(4): 298-307.
28. Wang Q, Wan J, Zhang W, Hao S. MCL-1 or BCL-xL-dependent resistance to the BCL-2 antagonist (ABT-199) can be overcome by specific inhibitor as single agents and in combination with ABT-199 in acute myeloid leukemia cells. Leuk Lymphoma. 2019; 60(9): 2170-2180.
29. Phillips DC, Jin S, Gregory GP, Zhang Q, Xue J, Zhao X, et al. A novel CDK9 inhibitor increases the efficacy of venetoclax (ABT-199) in multiple models of hematologic malignancies. Leukemia. 2020; 34(6): 1646-1657.
30. Zhou XX, Wang X. Role of microRNAs in chronic lymphocytic leukemia (Review). Mol Med Rep. 2013; 8(3): 719-725.
31. Zhu DX, Zhu W, Fang C, Fan L, Zou ZJ, Wang YH, et al. miR-181a/b significantly enhances drug sensitivity in chronic lymphocytic leukemia cells via targeting multiple anti-apoptosis genes. Carcinogenesis. 2012; 33(7): 1294-1301.
32. Moussay E, Palissot V, Vallar L, Poirel HA, Wenner T, El Khoury V, et al. Determination of genes and microRNAs involved in the resistance to fludarabine in vivo in chronic lymphocytic leukemia. Mol Cancer. 2010; 9: 115.
33. Chen J, Zhang X, Lentz C, Abi-Daoud M, Paré GC, Yang X, et al. miR-193b regulates Mcl-1 in melanoma. Am J Pathol. 2011; 179(5): 2162-2168.
34. Lam LT, Lu X, Zhang H, Lesniewski R, Rosenberg S, Semizarov D. A microRNA screen to identify modulators of sensitivity to BCL2 inhibitor ABT-263 (navitoclax). Mol Cancer Ther. 2010; 9(11): 2943-2950.
35. Beroske L, Van den Wyngaert T, Stroobants S, Van der Veken P, Elvas F. Molecular imaging of apoptosis: the case of caspase-3 radiotracers. Int J Mol Sci. 2021; 22(8): 3948.
36. Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol. 2021; 18(5): 1106-1121.
37. Pan Y, Cheng A, Wang M, Yin Z, Jia R. The dual regulation of apoptosis by flavivirus. Front Microbiol. 2021; 12: 654494.