Alginate Effects on Human Sperm Parameters during Freezing and Thawing: A Prospective Study

Document Type : Original Article


1 Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

2 Tissue Engineering and Applied Cell Sciences Division, Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran


Objective: The main goal was to evaluate the effects of alginate on human sperm parameters during cryopreservation.
Materials and Methods: In this prospective study, twenty-five normozoospermic samples were divided into two groups,
encapsulated with 1% alginate and the control group. The samples were then frozen by rapid freezing. Different sperm parameters including motility, normal morphology, viability, acrosome reaction, and DNA integrity, were examined before freezing and after thawing.
Results: All sperm parameters had a significant decrease after thawing compared to before freezing. Our data showed a significant decrease in sperm motility of the alginate group but sperm viability, normal morphology, and DNA fragmentation were similar between the two groups. However, the rates of intact acrosome and native DNA were significantly lower in the control group compared to the alginate group (45.12 ± 11.1 vs. 55.25 ± 10.69 and 52.2 ± 11.92
vs. 68.12 ± 10.15, respectively, P<0.05).
Conclusion: It seems that alginate can prevent premature acrosome reaction and protect sperm DNA from denaturation during the rapid freezing process.


1. Di Santo M, Tarozzi N, Nadalini M, Borini A. Human sperm cryopreservation: update on techniques, effect on DNA integrity, and implications for ART. Adv Urol. 2011; 2012.
2. Ammar SJ, Arfaoui R, Hammami F, Souayah N, Chibani M, Rachdi R. Does cryopreservation of testicular sperm affect icSi outcomes in azoospermia? Tunis Med. 2020; 98(07): 581-587.
3. Bahmyari R, Zare M, Sharma R, Agarwal A, Halvaei I. The efficacy of antioxidants in sperm parameters and production of reactive oxygen species levels during the freeze-thaw process: A systematic review and meta-analysis. Andrologia. 2020; 52(3): e13514.
4. Hezavehei M, Sharafi M, Kouchesfahani HM, Henkel R, Agarwal A, Esmaeili V, et al. Sperm cryopreservation: a review on current molecular cryobiology and advanced approaches. Reprod Biomed Online. 2018; 37(3): 327-339.
5. O’connell M, McClure N, Lewis S. The effects of cryopreservation on sperm morphology, motility and mitochondrial function. Hum Reprod. 2002; 17(3): 704-709.
6. Said TM, Gaglani A, Agarwal A. Implication of apoptosis in sperm cryoinjury. Reprod Biomed Online. 2010; 21(4): 456-462.
7. Gombotz WR, Wee S. Protein release from alginate matrices. Adv Drug Deliv Rev. 1998; 31(3): 267-285.
8. Kumar P, Pawaria S, Dalal J, Ravesh S, Bharadwaj S, Jerome A, et al. Sodium alginate potentiates antioxidants, cryoprotection and antibacterial activities of egg yolk extender during semen cryopreservation in buffalo. Anim Seprod Sci. 2019; 106166.
9. Swioklo S, Constantinescu A, Connon CJ. Alginate-sencapsulation for the improved hypothermic preservation of human adipose-derived stem cells. Stem Cells Transl Med. 2016; 5(3): 339-349.
10. Pirnia A, Parivar K, Hemadi M, Yaghmaei P, Gholami M. Stemness of spermatogonial stem cells encapsulated in alginate hydrogel during cryopreservation. Andrologia. 2017; 49(5): e12650.
11. Perteghella S, Gaviraghi A, Cenadelli S, Bornaghi V, Galli A, Crivelli B, et al. Alginate encapsulation preserves the quality and fertilizing ability of Mediterranean Italian water buffalo (Bubalus bubalis) and Holstein Friesian (Bos taurus) spermatozoa after cryopreservation. J Vet Sci. 2017; 18(1): 81.
12. Herrler A, Eisner S, Bach V, Weissenborn U, Beier HM. Cryopreservation of spermatozoa in alginic acid capsules. Fertil Steril. 2006; 85(1): 208-213.
13. Vigo D, Faustini M, Villani S, Orsini F, Bucco M, Chlapanidas T, et al. Semen controlled-release capsules allow a single artificial insemination in sows. Theriogenology. 2009; 72(4): 439-444.
14. Shah S, Otsuki T, Fujimura C, Yamamoto N, Yamashita Y, Higaki S, et al. Cryopreservation of microencapsulated canine sperm. Theriogenology. 2011; 75(4): 679-686.
15. Torre M, Faustini M, Norberti R, Stacchezzini S, Maggi L, Maffeo G, et al. Boar semen controlled delivery system: storage and in vitro spermatozoa release. J Control Release. 2002; 85(1-3): 83-89.
16. Najafi L, Halvaei I, Movahedin M. Canthaxanthin protects human sperm parameters during cryopreservation. Andrologia. 2019; 51(10): e13389.
17. World Health Organization. WHO laboratory manual for the examination and processing of human semen. Geneva: WHO press; 2010.
18. Shahmoradi E, Baheiraei N, Halvaei I . Trehalose attenuates detrimental effects of freeze-drying on human sperm parameters. Biopreserv Biobank. 2022; 20(1): 31-37.
19. Nabi A, Khalili M, Halvaei I, Roodbari F. Prolonged incubation of processed human spermatozoa will increase DNA fragmentation. Andrologia. 2014; 46(4): 374-379.
20. Akbari A, Anvar Z, Jaafarinia M,Totonchi M. Genetic etiology of Asthenozoospermia: a review. Feyz. 2019; 23(3): 318-333.
21. Baccetti B, Collodel G, Gambera L, Moretti E, Serafini F, Piomboni P. Fluorescence in situ hybridization and molecular studies in infertile men with dysplasia of the fibrous sheath. Fertil Steril. 2005; 84(1): 123-129.
22. Torre M, Maggi L, Vigo D, Galli A, Bornaghi V, Maffeo G, et al. Controlled release of swine semen encapsulated in calcium alginate beads. Biomaterials. 2000; 21(14): 1493-1498.
23. Gosálvez J, Cortés-Gutierez E, López-Fernández C, Fernández J L, Caballero P, Nuñez R. Sperm deoxyribonucleic acid fragmentation dynamics in fertile donors. Fertil Steril. 2009; 92(1): 170-173.
24. Ghidoni I, Chlapanidas T, Bucco M, Crovato F, Marazzi M, Vigo D, et al. Alginate cell encapsulation: new advances in reproduction and cartilage regenerative medicine. Cytotechnology. 2008; 58(1): 49-56.
25. Finosh GT, Jayabalan M. Reactive oxygen species—Control and management using amphiphilic biosynthetic hydrogels for cardiac applications. Adv Biosci Biotech. 2013; 4(12): 41356.
26. Gao D, Liu J, Liu C, McGann L, Watson P, Kleinhans F, et al. Andrology: Prevention of osmotic injury to human spermatozoa during addition and removal of glycerol. Hum Reprod. 1995; 10(5): 1109-1122.
27. Pommer A, Meyers SA. Tyrosine phosphorylation is an indicator of capacitation status in fresh and cryopreserved stallion spermatozoa. Theriogenology. 2002; 58(2-4): 351-354.
28. Chohan KR, Griffin JT, Lafromboise M, De Jonge CJ,Carrell DT. Comparison of chromatin assays for DNA fragmentation evaluation in human sperm. J Androl. 2006; 27(1): 53-59.
29. Gopalkrishnan K, Hurkadli K, Padwal V, Balaiah D. Use of acridine orange to evaluate chromatin integrity of human spermatozoa in different groups of infertile men. Andrologia. 1999; 31(5): 277-282.
30. Aitken RJ, Koppers AJ. Apoptosis and DNA damage in human spermatozoa. Asian J Androl. 2011; 13(1): 36-42.
31. Agarwal A, Said TM. Oxidative stress, DNA damage and apoptosis in male infertility: a clinical approach. BJU Int. 2005; 95(4): 503-507.
32. Nebel RL, Vishwanath R, McMillan W, Pitt C. Microencapsulation of bovine spermatozoa: effect of capsule membrane thickness on spermatozoal viability and fertility. Anim Reprod Sci. 1996; 44(2): 79-89.
33. Nebel RL, Saacke RG. Spermatozoa microencapsulation and capsule behavior in female tract. Reprod Dom Anim. 1996; 31(1): 75–85.
34. Whaley D, Damyar K, Witek RP, Mendoza A, Alexander M, Lakey JRJCT. Cryopreservation: an overview of principles and cell-specific considerations. Cell Transplant. 2021; 30: 963689721999617.