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Abstract
Objective: Astronauts are exposed to a wide range of environmental stresses during spaceflights that reduce their 
immune responses and make them more susceptible to infections and malignancies. Exposure to a low dose of a 
certain stress induces an adaptive response, which leads to resistance to higher doses of the same or other types 
of stress. We designed this study to investigate the effect of radiofrequency electromagnetic field (RF-EMF)-induced 
adaptive response on immune system modulation in a mouse model of hindlimb unloading (HU) as a ground-based 
animal model of spaceflight conditions. 

Materials and Methods: In this experimental study, serum levels of T helper (Th)-mediated cytokines were determined 
by the multiplex cytometric bead assay in four groups of mice (n=10 per group): HU mice, RF-EMF-treated mice, HU 
mice pre-exposed to RF-EMF; and untreated controls. Mice were exposed to 2450 MHz RF-EMF with SAR 0.478 W/
kg for 12 hours/day for three successive days. 

Results: Tumor necrosis factor-alpha (TNF-α), interleukin-9 (IL-9) and IL-22 were significantly decreased in HU mice. 
Comparison between HU mice and RF-EMF-treated mice showed an opposite change in IL-6, while IL-9, IL-22, IFN-γ 
and TNF-α decreased in both groups. However, just interferon gamma (IFN-γ) was significantly decreased in HU mice 
that were pre-exposed to RF-EMF compared to the control group.

Conclusion: The effect of RF-EMF in elevating IL-6 and reducing IL-9 in opposite directions in HU mice suggest a 
modulating effect of RF-EMF on HU-induced changes in these cytokines, as Th2 and Th9 eventually returned to normal 
levels and balances in cytokine ratios were also restored in HU mice pre-exposed to RF-EMF. 
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Introduction 
During spaceflight, astronauts encounter a variety of 

environmental changes (1) such as microgravity (2) and 
exposure to radiation and solar energetic particles (3, 4). 
Along with circadian rhythm disturbances (5) and altered 
nutritional intake (6), these changes may lead to dysregulation 
of physiological functions. Impaired immune responses to 
infectious agents and malignant cells may be life-threatening 
to space travelers (7, 8).

The fine-tuning of immune responses is mediated by 
cytokines secreted mainly by T helper (Th) cells. While 
Th2-mediated humoral immunity plays a major role against 
extracellular pathogens, cellular immunity mediated by 
Th1 cells acts as an essential response to viruses and tumor 
cells. Furthermore, Th17 cells contribute to the clearance of 
extracellular microorganisms by neutrophilic inflammation. 

These cells also promote mucosal and epithelial barrier 
functions. Th9 is crucial for defense against helminthes, and 
Th22 cells found mainly in the epidermis play an important 
role in chronic inflammatory skin disorders (9).

There is some evidence of immune deregulation during 
extended space missions (10, 11). Spaceflight represents 
a unique situation that results in numerous changes in 
the human body. The study of immune reactivity before, 
during and after brief or extended flights is essential 
for understanding integrated responses in the complex 
environment that astronauts inhabit. Since many experiments 
cannot be performed in these conditions, ground-based 
models that simulate spaceflight conditions can help take 
this research forward. Mouse models of hindlimb unloading 
(HU) are widely used to mimic the effect of microgravity 
during spaceflight on mouse physiology (12).
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Adaptive response is the exposure to a low dose of a certain 
stress that leads to resistance to higher doses of the same or 
other types of stress (13). Adaptive response was first reported 
by Samson and Cairns (14) in 1977 when they observed 
bacterial resistance to a high dose of an alkylating mutagen 
following bacterial growth in a nontoxic dose of the same 
substance. In 1984, Olivieri et al. (15) also found that human 
lymphocytes exposed to 3H-thymidine, as a source of low-
level chronic radiation, became more resistant to chromosomal 
aberration that resulted from high doses of X-rays. It was 
previously shown that laboratory animals pre-exposed to a 
radiofrequency electromagnetic field (RF-EMF) were more 
resistant to subsequent high doses of ionizing radiation or 
infections caused by life-threatening microorganisms (16-
18). Zeni et al. (19) observed a remarkable decrease in the 
frequency of micronuclei formation in lymphocytes of 
individuals who were pre-exposed to 1950 MHz RF-EMF at 
a specific absorption rate (SAR) of 0.3 W/kg for 20 hours 
and then challenged with mitomycin C. Jiang et al. (20, 21) 
observed a notable reduction in DNA damage in blood and 
bone marrow leukocytes of mice that were pre-exposed to an 
adaptation dose of 900 MHz RF-EMF at a power density of 
120 mW/cm2 for 4 hours/day for 3-14 consecutive days, and 
then exposed to 3 Gy whole-body γ-radiation. In the current 
study, we compared serum cytokine levels in HU mice with 
and without RF-EMF-treatment to untreated mice in order to 
investigate the effects RF-EMF-induced adaptive response 
on immunomodulation in microgravity conditions.

Materials and Methods 
Study design 

In this experimental study, 6-week-old male BALB/c mice 
with a mean body weight of 25-30 g were housed under 
controlled conditions at a temperature of 23 ± 1˚C, humidity 
of 50 ± 5% and equal light/dark cycle. The experimental 
protocols were approved by the Ethics Committee of Shiraz 
University of Medical Sciences (approval code: IR.SUMS.
REC.1394.S59) based on the "Guide for the Care and Use 
of Laboratory Animals" published by the National Academy 
Press (22). 

After a 7-day isolation period, the animals were randomly 
allocated to four groups (10 mice per group): untreated mice 
(G1), mice with HU (G2), RF-EMF-treated mice (G3) and 
HU mice that were pre-exposed to RF-EMF (G4). Blood 
samples were collected from each mouse 24 hours after 
the last intervention in each group. All serum samples were 
isolated and stored at -20˚C until further use.

Hindlimb unloading mouse model 
Hindlimb unloaded mice were prepared as previously 

described (23). Briefly, one week after inserting a stainless 
steel ring between the L5 and L6 mouse vertebrae, the tail 
ring was connected to a bobbin in a rail mounted at the roof 
of a plastic cage using an S-shaped hook. Each mouse was 
suspended by the tail with a 20-degree angle of hind limbs to 
the horizon. During this time, the animals had free access to 
food and water.

Radiofrequency irradiation 
An AD-link Wi-Fi router was used as the source of RF-EMF. 

During the exposure period, data was shared between the Wi-
Fi router and a laptop at a distance of 6 m in an adjoining 
room. The Wi-Fi router operated at a power level of 1 W and 
the device was located 30 cm from the animals’ cage. Mice 
were exposed to 2450 MHz RF-EMF at SAR 0.478 W/kg 
for 12 hours/day for 3 successive days. All experiments were 
performed in an environment with a negligible background 
level of electric and magnetic fields.

Cytokine assay 
Serum levels of Th-related cytokines that included Th1 

(IFN-γ, TNF-α and IL-2), Th2 (IL-4, IL-5, IL-6, IL-10 and IL-
13), Th17 (IL-17A, IL-17F and IL-21), Th9 (IL-9) and Th22 
(IL-22) were quantified with a multiplex cytometric bead 
assay using a commercial kit (BioLegend, San Diego, CA, 
USA) according to the manufacturer’s directions. Briefly, a 
mixture of FITC-labeled antibody-coated beads for each 
desired cytokine, which could be differentiated by their sizes 
and fluorescence intensities, was incubated with the mouse 
serum samples or standards. After capturing the cytokines by 
the beads, biotin-conjugated anti-mouse antibody and PE-
labeled streptavidin were successively added. The results were 
visualized with a FACSCalibur flow cytometer (eBioscience, 
San Diego, CA, USA) and the data were analyzed with 
FlowCytomix Pro-3.0 software (BioLegend).

Statistical analysis 
The Shapiro-Wilk test was used to verify normal distribution 

of the data. The nonparametric Kruskal-Wallis test was used 
to compare cytokine levels among groups. Then, post hoc 
pairwise multiple comparisons were performed with Dunn’s 
test. All statistical analyses were done with SPSS 23 (SPSS 
Inc., Chicago, Illinois, USA) and a two-sided P≤0.05 was 
considered statistically significant. GraphPad Prism 6.0 
(GraphPad Software Inc., La Jolla, San Jose, CA, USA) was 
used to generate the graphs.

Results
We investigated the effect of RF-EMF-induced adaptive 

response on the immune system in HU mice. To this effect, 
serum levels of Th-related cytokines were determined in HU 
mice, RF-EMF-treated mice and HU mice that were pre-
exposed to RF-EMF in comparison to untreated mice. 

Figure 1 shows the significant changes in cytokine levels 
among the studied groups. As shown, there was a decrease 
in IL-9 (P=0.007), IL-22 (P=0.006), TNF-α (P=0.029) and 
IFN-γ (non-significant, NS) levels, whereas IL-6 (NS) levels 
increased in HU mice compared with the control group 
(G2 vs. G1). A comparison of RF-EMF-treated mice to the 
control group (G3 vs. G1) showed an increase in IL-9 (NS) 
and decrease in IL-22 (P=0.001), TNF-α (NS), IFN-γ (NS) 
and IL-6 (NS) levels. A comparison between HU mice and 
RF-EMF-treated mice showed the opposite, an increase 
in IL-6 (0.001),  whereas IL-9, IL-22, IFN-γ and TNF-α 
levels decreased in both groups. However, only IFN-γ had a 

https://www.emf-portal.org/en/glossary/term/1223
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significant decrease in HU mice that were pre-exposed to RF-
EMF compared with the control group (G4 vs. G1).

Figure 2 shows the cytokine changes in Th subsets and 
their ratios. Th1 levels significantly decreased (P=0.033), 
Th2 slightly increased (NS), and the Th1/Th2 ratio decreased 
significantly (P=0.008) in G2 compared to G1 mice. Although 
Th17 showed no change between these two groups, the 

(Th1+Th17)/Th2 ratio (P=0.009) was significantly decreased 
in G2 compared to G1. Th subsets and their ratios showed 
no remarkable differences between G3 compared to G1. 
However, significant changes, in the opposite directions, were 
observed in Th2 (P=0.001), Th1/Th2 (P=0.006), Th17/Th2 
(P=0.003), (Th1+Th17)/Th2 (P=0.002) and (Th1+Th17)/
(Th2+Th22) (P=0.002) between G2 and G3.

Fig.1: Comparison of cytokine serum levels among four mouse groups (n=10 in each group). Mouse groups are G1; Untreated mice, G2; Hindlimb unloading 
(HU) mice, G3; Radiofrequency electromagnetic field (RF-EMF)-treated mice, and G4; HU mice that were pre-exposed to RF-EMF.
*; P<0.05, **; P<0.01, and ***; P<0.001.

Fig.2: Comparison of cytokines in each T helper (Th) cell subset and their ratios among four mouse groups (n=10 in each group). Mouse groups are G1; Untreated 
mice, G2; Hindlimb unloading (HU) mice, G3; Radiofrequency electromagnetic field (RF-EMF)-treated mice, and G4; HU mice that were pre-exposed to RF-EMF.
*; P<0.05, **; P<0.01, and ***; P<0.001.
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Discussion
We investigated the modulating effect of RF-EMF on HU-

induced changes in Th-mediated cytokines by comparing 
serum cytokine levels in HU mice with and without RF-EMF 
treatment to untreated mice. Our results showed markedly 
decreased Th1 levels in HU mice in light of the reduction in 
IFN-γ and TNF-α. Reactivation of latent viruses in astronauts 
during long-term spaceflight has previously been reported 
(24, 25) which might be explained by reduced Th1 responses, 
although the importance of antibodies in the control of viral 
infections should not be ignored. In this connection, Gaignier 
et al. (26) also reported decreased numbers of B cells in the 
spleen of HU mice and an impaired proliferative response 
in these cells after mitogen stimulation. However, they used 
Th1-biased C57BL/6 mice in their experiments instead of 
the Th2-prone BALB/c mice that we used in the current 
study (27). 

Our results showed a slight increase in Th2 cytokine 
levels in HU mice, which might be explained by the slight 
elevation of IL-6. This finding agreed with the results of 
Jang et al. who found slight change in Th2 cytokines after 
in vitro stimulation of T cells from HU BALB/c mice (28). 
We found no change in Th17 cytokines in HU mice, which 
was in line with the results reported by Gaignier et al. 
(26). In our study, IL-22 levels markedly decreased in HU 
mice. Although there was no study that directly focused 
on changes in IL-22 levels in HU mice, Li et al. (29, 30) 
reported delayed corneal epithelial wound healing in HU 
mice, which they attributed to decreased levels of IL-22.

In our study, RF-EMF had no crucial effect on IL-9 
as well as Th1-, Th2-, and Th17-mediated cytokines; 
however, there was a strongly decreased IL-22 level in 
G3 mice compared to the control group.

The opposite changes of IL-6 in G2 compared to G3 mice 
suggest a modulating effect of RF-EMF on HU-induced 
changes in this cytokine. This compensatory effect was 
also observed in IL-9, as eventually Th2 and Th9 returned 
to normal levels in G4 mice. The modulating effect of 
RF-EMF on key cytokines might explain the restoration 
of Th1/Th2, Th17/Th2, (Th1+Th17)/Th2, (Th1+Th17)/
(Th2+Th22) and (Th1+Th17)/(Th2+Th9+Th22) balances 
in G4 mice. 

However, concurrent reduction of IFN-γ, TNF-α and 
IL-22 was observed following HU induction and after 
RF-EMF treatment in G2 and G3 mice, respectively. The 
synergistic effect of both conditions was just detected in 
IFN-γ, which significantly decreased in G4 compared to 
the control group.

If further experiments in humans confirm the modulatory 
effect of RF-EMF on microgravity-induced cytokine 
changes, this method could be used in future long-term 
crewed space flights, especially journeys to Mars which 
are planned for the next decade. Due to similarities 
between space field complications and prolonged head-
down bed rest patients, RF-EMF might also be helpful in 
immunomodulation of these patients.

Conclusion
The effect of RF-EMF in elevating IL-6 and reducing 

IL-9 in opposite directions in HU mice suggests a 
modulating effect of RF-EMF on HU-induced changes in 
these cytokines, as Th2 and Th9 eventually returned to 
normal levels and balances in cytokine ratios were also 
restored in HU mice pre-exposed to RF-EMF. 
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