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Abstract
Objective: microRNAs (miRNAs) play bifunctional roles in the initiation and progression of cancer, and recent evidence 
has confirmed that unusual expression of miRNAs is required for the progress of breast cancer. The regulatory role of 
aryl hydrocarbon receptor (AhR) and its endogenous ligand, 6-formylindolo[3,2-b]carbazole (FICZ) on the expression 
of tumor suppressor miRNAs, miR-22, miR-515-5p and miR-124-3p, as well as their association with the estrogen 
receptor alpha (ERα) were the aims of this study.         
Materials and Methods: In this experimental study, the expression levels of miR-22, miR-515-5p, miR-124-3p and 
miR-382-5p in MCF-7 cells were determined using the quantificational real time polymerase chain reaction (qRT-PCR) 
assay.    
Results: Our results revealed that miR-22, miR-515-5p, and miR-124-3p expressions were significantly increased in 
cells transfected with ERα siRNA. Our data also showed that miR-22, miR 515-5p, and miR-124-3p expression levels 
were significantly increased following FICZ treatment. Here, we found that AhR/ERα cross-talk plays a critical role in 
the expression of miR-22, miR-515-5p and miR-124-3p in MCF-7 cells.     
Conclusion: Overall, our data demonstrated that FICZ, as an AhR agonist could induce the expression of tumor 
suppressor miRNAs, miR-22, miR-515-5p, and miR-124-3p; thus, FICZ might be regarded as a potential therapeutic 
agent for breast cancer treatment.      
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Introduction
Breast cancer as a malignant neoplasm originated 

from the breast tissues, is still the most common cause 
of women death worldwide despite advances made in 
both diagnosis and treatment (1).

microRNAs (miRNAs) are single-stranded non-
coding RNAs with small size that regulate some 
of biological processes such as cell proliferation, 
differentiation, migration and apoptosis. miRNAs play 
roles in post-transcriptional modification of mRNAs 
by binding to the 3’-untranslated regions (3’-UTRs) 
through complementary base pairing (2), resulting in 
cleavage/degradation of the mRNA and consequently, 
translational repression (3). miRNAs can function as 
either oncomiRs or tumor suppressors (4). Owing to 
their potential ability to regulate numerous protein-
encoding genes, miRNAs are regarded as a promising 
new target in the development of clinical treatments 
(5). miRNAs were found to be over-expressed in 

various human diseases including cancers (6). miR-22 
regulates estrogen receptor alpha (ERα) target genes 
by direct binding to ERα 3’-UTR region (7) through 
both destabilizing mRNA and inhibiting translation 
(8). miR-22 increases the radiosensitivity of breast 
cancer cells and inhibits tumorgenesis by targeting 
Sirt 1 (silent information regulator 1) (9). Moreover, 
miR-22 down-regulates the proto-oncogene ATP 
citrate lyase which inhibits the growth and metastasis 
of breast cancer cells (10).

miR-515-5p controls cancer cell migration through 
modulation of MARK4 (microtubule affinity-
regulating kinase 4) 3’-UTR region (11). The miR-124 
expression is significantly suppressed in breast cancer 
cells (12). miR-124-3p appears to be a tumor suppressor 
in breast cancer cells and it acts via targeting CBL (Cbl 
proto-oncogene, E3 ubiquitin protein ligase) (13). 
However, the molecular pathways underlying miR-
124 modulatory actions in breast cancer cells are not 
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fully understood. Cyclin-dependent kinase 4 (CDK4), 
a master regulator of the cell cycle belonging to the 
CDK family (14), is identified as a major oncogenic 
driver among the cell cycle components (15); also, 
CDK4 has been found in several tumor types including 
breast (16) and lung cancers (17). It was shown that 
CDK4 is a target of miR-124 (12). 

Development of breast cancer is closely 
associated with estrogen levels in the body. UDP-
glucuronosyltransferase (UGT) is an important class 
of phase 2 drug metabolizing enzymes that plays a 
pivotal role in detoxification of steroid compounds. 
UGTs eliminate estrogen hormones and influence 
estrogen signaling pathway (18). UGT2B isoforms 
are involved in regulating cell proliferation in human 
cancer cells. The UGT2B4, 2B7 and 2B15 isoforms 
are also involved in the glucuronidation of biologically 
active lipids (19). miR-382-5p regulates UGT2B15 
and UGT2B17 isoforms (20). The Ras GTPase 
superfamily member RERG (Ras-related and estrogen-
related growth inhibitor) reduces breast cancer cells 
proliferation and tumor formation. RERG was shown 
to play a regulatory role in the Ras/ERK pathway. 
miR-382-5p directly represses RERG;  therefore, miR-
382-5p promotes viability, survival, migration and 
invasion of breast cancer cells (21). 

The aryl hydrocarbon receptor (AhR) belongs to the 
family of basic helix-loop-helix nuclear transcription 
factors (22). The AhR downstream targets, cytochrome 
P450 (CYP1) isoforms, play bifunctional roles in 
detoxification or bioactivation of  carcinogens, 
xenobiotics, and physiological compounds such as 
benzo(a)pyrene  and estradiol (23). At the cellular 
level, AhR has functional interactions with signaling 
pathways governing cell proliferation and cell cycle, 
cell morphology, cell adhesion and cell migration 
(24). 6-formylindolo[3,2-b]carbazole (FICZ), a 
derivative of tryptophan (Trp) amino acid, is an 
ideal substrate for CYP1A1, 1A2, and 1B1 (25). 
FICZ also binds the AhR with the highest affinity 
known to date and thus, it reveals the characteristics 
of an endogenous signaling molecule (26-28). 
FICZ stimulates AhR-mediated activation of drug 
metabolizing enzymes such as CYP1A1 that end up 
its activity by generating a negative feedback control 
of its action (22, 25, 27-29).

This study was designed to reveal effects of FICZ, as an 
endogenous AhR ligand, on the expression levels of miR-
22, miR-515-5p, miR-124-3p and miR-382-5p in MCF-7 
breast cancer cell line.

Materials and Methods

Chemicals 

6-formylindolo[3,2-b]carbazole (FICZ) was 

purchased from Syntastic AB, Sweden. 1-methyl-N-
[2-methyl-4-[2-(2-methylphenyl)diazenyl] phenyl]-
1H-pyrazole-5-carboxamide (CH223191) and 
17β-Estradiol (E2), dimethyl sulfoxide (DMSO) were 
bought from Sigma-Aldrich, Germany. All cell culture 
reagents and media were purchased from Invitrogen.

Cell culture and chemical treatments

In this experimental study, MCF-7 cells were 
maintained in 10% fetal bovine serum (FBS)-
supplemented Dulbecco’s modified Eagle’s medium 
(DMEM) containing 100 μg/mL streptomycin, and 
100 IU/mL penicillin under an atmosphere containing 
5% CO2 at 37˚C.  Cells were treated with desired 
concentrations of chemicals, after replacing the growth 
medium with fresh medium without FBS. The final 
concentration of DMSO was 0.1% (v/v).

Small interfering RNA treatments

SiRNA against ERα (Santa Cruz Biotechnology, CA, 
USA) was used for the targeted knockdown of ERα 
protein expression. Non-targeting scrambled siRNA 
(Santa Cruz Biotechnology, USA) was used as a control. 
MCF-7 cells were seeded in 6-well plates and grown in an 
antibiotic-free medium containing 5% FBS. At 50-60% 
confluence, the cells were transfected with 100 nM ERα 
siRNA or scrambled siRNA using lipofectamine 2000 
(Invitrogen, USA) in 1 ml of transfection medium (Santa 
Cruz Biotechnology, USA). After 5 hours, the medium 
was replaced with fresh medium and 3 hours later, the 
cells were treated with DMSO, FICZ (1 nM), E2 (10 nM), 
and CH223191 (10 nM) for 18 hours.

RNA extraction and cDNA synthesis of miRNAs
The TRizol reagent (Invitrogen, Carlsbad, CA, USA) 

was used for isolation of total RNA according to the 
manufacturer’s instructions; then, total RNA was reversely 
transcribed into cDNA by using the RT microRNA Kit 
(EXIQON, Denmark). The ERα mRNA in the cells was 
quantified by using the following primers: 
F: 5´-GTTCTTAGTGGCACATCTTCTG-3´
R: 5´-GAATCCTCACGCTTAGTAACATAG-3´. 
Real-time reverse transcription polymerase chain reaction 
(RT-PCR) amplification consisted of 40 cycles (95˚C for 
5 seconds, 63˚C for 20 seconds, and 72˚C for 30 seconds) 
after an initial denaturation done at 95˚C for 5 minutes 
in an ABI StepOne™ real-time quantitative PCR system. 
The fold change of the miRNA expression was calculated 
by using the 2-ΔΔCt method after normalization against the 
5S rRNA (used as internal control) expression.

Statistical analysis
Statistical significance was determined by one-way 

ANOVA and Tukey test. The results are expressed as means 
± SD for at least three separate (replicate) experiments for 
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each treatment group in the in vitro studies. P<0.05 were 
considered statistically significant.

Results
Effect of ERα on the expression of miR-22, mir-515-5p, 
miR-124-3p and miR-382-5p, in MCF-7 cells

In this study, MCF-7 cells were treated with E2 (10 nM) 
and our results revealed that  miR-22, miR-515-5p, and 
miR-124-3p expressions were significantly increased and  
miR-382-5p were decreased. The expression of miR-22, 
miR-515-5p, and miR-124-3p were respectively 8, 2.46, 
and 2.29 times higher in the ERα-silenced cells than 
scrambled ones (Fig.1).

Fig.1: Expressions of miR-22, miR-515-5p, and miR-124-3p were inversely 
correlated with ERα in MCF-7. The cells were treated with E2 (10 nM) 
and the levels of miR-22, miR-515-5p, miR-124-3p and miR-382-5P were 
measured using real-time RT-PCR. Values are expressed as means ± SE. 
Asterisks denote significant differences (***; P<0.001) between control 
and other treated groups and significant differences (+++; P<0.001) 
between cells treated with siRNA and those treated with scrambled siRNA. 
ERα; Estrogen receptor alpha and RT-PCR; Real-time reverse transcription 
polymerase chain reaction.

Effect of AhR on the expression of miR-22, mir-515-5p, 
miR-124-3p and miR-382-5p, in MCF-7 cells

 MCF-7 cells were treated with an AhR agonist, FICZ 
(1 nM) or an AhR antagonist, CH223191 (10 nM) either 
alone or in combinations, our data showed that the 
miR-22, miR515-5p, and miR-124-3p expression levels 
were significantly increased by FICZ and CH223191 
treatments. The expression of miR-22, miR515-5p, and 
miR-124-3p in FICZ, CH223191 and FICZ+CH223191 
treated groups were respectively 12.55, 7.94, 7.46; 
4.75, 2.21, 3.7 and 8.69, 2.29, 5.27 times higher than 
the control group (Figs.2-4). miR-382-5p expression 
levels significantly decreased in cells treated with FICZ+ 
CH223191 (Fig.5).

Fig.2: Expression of miR-22 was AhR-dependent in MCF-7. The quantitative 
RT-PCR analysis showed that the expression level of miR-22 was much 
higher in the cells treated with FICZ in comparison to control. Values 
are expressed as mean ± SE. Asterisks denote significant differences 
(***; P<0.001) between control and other treated groups and significant 
differences (++; P<0.001) between cells treated with FICZ and the cells 
treated with FICZ+ CH223191. AhR; Aryl hydrocarbon receptor, RT-PCR; 
Real-time reverse transcription polymerase chain reaction, and FICZ; 
6-formylindolo[3,2-b]carbazole.

Fig.3: Expression of miR-515-5p was AhR-dependent in MCF-7. The 
quantitative RT-PCR analysis showed that the expression levels of miR-515-
5p were much higher in the cells treated with FICZ in comparison to control. 
Values are expressed as mean ± SE. Asterisks denote significant differences 
(**; P<0.01 and ***; P<0.001) between control and other treated groups 
and significant differences (+; P<0.05) between cells treated with FICZ and 
the cells treated with FICZ+ CH223191. AhR; Aryl hydrocarbon receptor, RT-
PCR; Real-time reverse transcription polymerase chain reaction, and FICZ; 
6-formylindolo[3,2-b]carbazole.
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Fig.4: Expression of miR-124-3p was AhR-dependent in MCF-7. The 
quantitative RT-PCR analysis showed that the expression levels of miR-
124-3p were much higher in the cells treated with FICZ in comparison to 
control. Values are expressed as mean ± SE. Asterisks denote significant 
differences (*; P<0.05 and ***; P<0.001) between control and other 
treated groups.  AhR; Aryl hydrocarbon receptor, RT-PCR; Real-time reverse 
transcription polymerase chain reaction, and FICZ; 6-formylindolo[3,2-b]
carbazole.

Fig.5: Expression of miR-382-5p was AhR-dependent in MCF-7. The 
quantitative RT-PCR analysis showed that the expression levels of miR-
382-5p were much lower in the cells treated with FICZ+CH223191 in 
comparison to control.. Values are expressed as mean ± SE. Asterisks 
denote significant differences (**; P<0.01) between control and other 
treated groups. AhR; Aryl hydrocarbon receptor, RT-PCR; Real-time reverse 
transcription polymerase chain reaction, and FICZ; 6-formylindolo[3,2-b]
carbazole.

Discussion
miRNAs are stable biomarkers as they have high 

stability in extreme conditions such as low pH and 
high temperatures (30) and are used as prognostic and 
therapeutic tools for breast cancer (31).

In ERα silencing cells, we observed significantly 
increased expression levels of miR-22, miR-515-5p, and 
miR-124-3p. Furthermore, FICZ treatments led to over-
expression of miR-22, miR-515-5p, and miR-124-3p.

miR-22 regulates ERα target genes by direct binding 
to the ERα 3’-UTR region (7) through both destabilizing 
and inhibiting translation of mRNA (8). miR-22 represses 
CD147 expression by directly targeting the CD147 
3’UTR site. miR-22 also indirectly participates in the 
CD147 modulation by down-regulating Sp1. Indeed, 
CD147 is overexpressed in breast cancer tissues, and 
its high expression is correlated with tumor invasion 
and metastasis (32). The transcription factors Sp1 could 
bind to the CD147 promoter and enhance its expression 
as well. In addition, low miR22 levels are significantly 
associated with poor differentiation of breast cancer 
cells. Furthermore, SIRT1 (Sirtuin1) expression levels are 
significantly up-regulated in breast cancer tissues. Since 
miR22 has suppressive effects on breast cancer cells via 
targeting SIRT1, miR22/SIRT1 axis may be used as a 
novel and potential therapeutic target for breast cancer 
treatment (33). 

Sphingo kinase-1 (SK1) mediates cell proliferation in 
cancer cells. miR-515-5p targets SK1 and inhibits breast 
cancer cells growth. Previous studies reported that SK1 
mediates estrogen-dependent tumorigenesis in MCF-7 
cells and estradiol down-regulates miR-515-5p expression 
but increases SK1 activity (34). miR-124 targets Slug 
(SNAI2, transcriptional repressor of E-cadherin) 
and regulates epithelial-mesenchymal transition and 
metastasis of breast cancer cells (35). miR-124 also 
suppresses breast cancer cells growth and motility by 
targeting CD151 (36). Moreover, miR-124-3p inhibits 
tumor metastasis by inhibiting PDCD6 expression.  In 
this regard, miR-124-3p/PDCD6 signaling axis may be a 
potential target for treatment of patients with advanced 
breast cancer.

Our results showed that ERα silencing significantly 
led to miR-382-5p down-regulation. miR-382-5p targets 
UDP-glucuronosyl transferases (UGTs) (20) which are 
involved in the detoxification of estrogen derivatives (18). 
Thus, miR-382-5p down-regulation may enhance estrogen 
detoxification. One of the new findings of the present 
study was that ERα silencing or FICZ treatment led to up-
regulation of miR-22, miR-515-5p, and miR-124-3p. ERα 
suppresses Drosha (one of the main processing enzymes 
in miRNA biogenesis) activity in MCF-7 cells (37). 
Therefore, we suggest that silencing ERα may enhance 
tumor suppressor miRNAs such as miR-22, miR-515-5p 
and miR-124-3p. 

A number of studies reported that AhR-ARNT complex 
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may reduce ERα-mediated transactivation (38) either 
directly by binding the inhibitory site of XRE (iXRE) or 
by employing shared coactivators (39).

Some reports also indicated that ERα can be activated by 
AhR agonists, but not by AhR antagonists (40). However, 
AhR antagonists may exhibit a partial effect.

Conclusion
Our data demonstrated that the overexpression of tumor 

suppressor miRNAs including miR-22, miR-515-5p, 
and miR-124-3p by FICZ, as an AhR agonist, might be 
considered a potential therapeutic approach against breast 
cancer.
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