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Abstract
Objective: Granulocyte colony-stimulating factor (G-CSF) has a wide variety of functions including stimulation of hematopoiesis 
and proliferation of granulocyte progenitor cells. Recombinant human G-CSF (rh-G-CSF) is used for treatment of neutropenia 
in patients receiving chemotherapy. The mature bloodstream neutrophils express G-CSF receptor (G-CSFR), presenting 
a significant and specific mechanism for circulating G-CSF clearance. Computational studies are essential bioinformatics 
methods used for characterization of proteins with regard to their physicochemical properties and 3D configuration, as well 
as protein–ligand interactions for recombinant drugs. We formerly produced rh-G-CSF in E. coli and showed that the isolated 
protein had unacceptable biological activity in mice. In the present paper, we aimed to characterize the purified rh-G-CSF by 
analytical tests and developed an in vivo model by computational modelling of G-CSF. 
Materials and Methods: In this experimental study, we analyzed the purified G-CSF using the analytical experiments. 
Then, the crystalline structure was extracted from Protein Data Bank (PDB) and molecular dynamics (MD) simulation was 
performed using Gromacs 5.1 package under an Amber force field. The importance of amino acid contents of G-CSF, to bind 
the respective receptor was also detected; moreover, the effect of dithiothreitol (DTT) used in G-CSF purification was studied.            
Results: The results revealed that characteristics of the produced recombinant G-CSF were comparable with those of 
the standard G-CSF and the recombinant G-CSF with the residual amino acid was stable. Also, purification conditions 
(DTT and existence of extra cysteine) had a significant effect on the stability and functionality of the produced G-CSF.                  
Conclusion: Experimental and in silico analyses provided good information regarding the function and characteristics of our 
recombinant G-CSF which could be useful for industrial researches.
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Introduction
The granulocyte colony stimulating factor (G-CSF) 

serves a directing role in the growth, differentiation, 
and motivation of neutrophils and their precursors in the 
immune system (1). Likewise, G-CSF has been effectively 
utilized in patients undergoing intensive chemotherapy; 
further, it might be utilized to recover the immune 
system in the patients with HIV, pneumonia, and febrile 
neutropenia (2-4). The recombinant human G-CSF (rh-G-
CSF) was expressed in engineered E. coli and affirmed in 
chemotherapy-induced neutropenia by the U.S Food and 
Drug Administration (FDA) in 1991 for clinical usage (5). 

Previous studies described various protocols for assessment 
of rh-G-CSF. These protocols used different chromatography 
columns and diverse detergents for purification of rh-G-CSF 
(6-8). Nowadays, purification of proteins fused to intein 
tags is an easy task. N-terminus or C-terminus of the target 
protein binds the intein tags. To achieve this purpose and also 
to double the expression of target protein, in our previous 
study, we linked 2 copies of G-CSF gene with 2 different 
intein sequences and attained target protein in two forms: 
G-CSF and G-CSF plus cysteine (9, 10). 

Furthermore, since intein tags may interfere with 

G-CSF binding to its receptor and therefore, disrupt its 
biological activity, it is necessary to simulate molecular 
dynamics (MD) to check the presence of these tags and 
examine their effect on G-CSF binding to G-CSFR. The 
receptor of hematopoietic cytokine G-CSF is a member 
of a family of proteins referred to as the "family of 
cytokine receptors" and characterized by the existence of 
a 200-residue ligand-binding module.  Alternatively, it is 
required to assess the effect of purification process on the 
protein stability and its receptor binding. To answer this 
question, computational studies were used in the present 
research. It should be mentioned that such study has not 
been conducted on G-CSF protein so far. The use of 
computational tools for determination of a new protein 
structure represents the most actual alternative to the 
experimental procedures. As relates to characterization 
of physicochemical and structural properties of a protein, 
there is no doubt that in silico methods can resolve 
complications made by purification techniques (11-15).     

Considering very different properties of commercially 
available rh-G-CSF proteins, we constructed a model of the 
isolated G-CSF and its G-CSFR. Previously, we produced 
G-CSF with intein tags and purified it using DTT and pH 
exchange. So, the present work was designed to identify 
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functional and structural changes, especially with respect 
to the extra amino acid residue of G-CSF, and intein 
tags as well as the presence of DTT in protein solution, 
and finally compare the results obtained for natural and 
purified G-CSF. We studied G-CSF characteristics, 
created our models with respect to the improved dynamic 
modelling of rh-G-CSF and studied the effect of DTT and 
the residual cysteine on G-CSF stability and function.

Materials and Methods
Designing the DNA fragment encompassing rh-G-
CSF coding sequence, intein, PelB, and intervening 
sequences of Trp operon

Two tandems of G-CSF sequences linked to inteins 
(CBD-Ssp DnaB and Mxe GryA-CBD) were described 
in a previous study. This fragment purchased from 
GENESCRIPT Company (USA) was acquired in the 
pUC57 vector located at 5′MscI and 3′ XhoI (14). In the 
next step, this fragment was inserted into the pET22b 
vector at the same sites in the downstream of the pelB 
signal sequence (Fig.1A) (9).

Rh-G-CSF production and purification
The cloning, expression and intein-mediated 

purification were performed in pET-22b (+) vector (9, 10, 
16). Purification was performed according to the template 

shown in Figure 1B (9).

Detection of E. coli host cell proteins

E. coli host cell proteins (HCP) were studied by an 
immunoenzymetric assay kit (Cygnus, USA) and an 
ELISA reader (Amersham, USA). According to the 
manufacturer’s protocol, 25 μL of each sample was 
loaded into each well. Next, 100 μL of E. coli antibody 
conjugated to horseradish peroxidase (HRP, Abcam, UK) 
was pipetted into each well. Then, these wells were covered 
and incubated on a rotator at 400-600 rpm for 90 minutes 
at room temperature (24 ± 4˚C). The content of each well 
was dumped into waste. The wells were blotted softly but 
firmly tapped over an absorbent paper to remove most 
of the residual liquid. The wells were filled generously 
to overflow with the diluted wash solution using a squirt 
bottle or pipetting in 350 μL. Washing was repeated. 
From the bottom outside of the microtiter wells, any fluid 
residue that could interfere in the reading step, was wiped 
off. Then, 100 μL of the 3,3’,5,5’-tetramethylbenzidine 
(TMB) substrate was pipetted and incubation was 
performed at room temperature for 30 minutes. Finally, 
100 μL of the stop solution was pipetted. Absorbance 
was read at 450/650 nm. The microplate reader drew one 
standard curve and automatically calculated the amount 
of HCP in the purified protein (17).

A
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Fig.1: Overall schema of 2800 bp expression vector with g-csf gene and 2 different inteins genes, pelB signal sequence and intervening sequence. A. 
Schematic representation of the vector construction and the expression of the N-terminal fusion and C-terminal fusion proteins and B. In C-terminal 
fusion protein, intein2-CBD was fused to the C-terminus of h G-CSF, allowing the cleavage of h G-CSF from G-CSF-intein2 using DTT. In N-terminal fusion 
protein, CBD-intein1 was fused to the N-terminus of h G-CSF, allowing the cleavage of h G-CSF from intein1- G-CSF through a pH and temperature shift. 
G-CSF; Granulocyte colony-stimulating factor.

Measurement of bacterial endotoxin contamination
The amount of bacterial endotoxin was determined by 

the LAL kit (Lonza, Switzerland) and an ELISA reader 
(Amersham, USA). Carefully, 50 μL of the purified 
protein was dispensed into suitable tubes that were 
endotoxin-free. These tubes were kept in a 37˚C water 
bath. Blank tubes plus four endotoxin standards were run 
in duplicate. The blank tubes contained 50 μL of the LAL 
reagent water instead of the sample. At the same time, to 
the reaction vessel, 50 μL of LAL was added. Then, 100 
μL of the substrate solution was added to the tubes (pre-
warmed to 37 ± 1˚C) after 10 minutes. After 16 minutes, 
100 μL of the stop reagent was added and mixed well. 
Absorbance of reaction in each tube was read at 405/410 
nm by the ELISA reader using distilled water to adjust 
the photometer to the zero absorbance. The ELISA reader 
drew one standard curve and automatically calculated the 
amount of endotoxin in the purified protein (17).

Impurities with charges that were different from those 
of Filgrastim (Isoelectric focusing)

Isoelectric focusing (IEF) was performed using a pH 
3-10 IEF gel (Invitrogen, Grand Island, NY) (17, 18). 

The electrophoresis system (Multiphor II, Amersham, 
USA) was fitted out with a buffer tank, a cooling plate, 
an electrode holder, and electrophoresis (EPH)/IEF 
electrodes. Experiments were performed using 7-cm 
immobilized pH gradient (IPG) stripes (pH=3-10). The 
system worked at room temperature. The pH gradient was 
4.5-8.0 and an isoelectric point (pI) calibration solution 
was prepared in the pI range of 2.5-6.5. The standard and 
the sample were put on the stripes. In this test, proteins 
were moving in the gel stripes and finally, the purified 
protein and standard protein were stopped at their pI. If 
there was any impurity in the purified protein, it would 
move in the gel and could be stopped at its pI. The 
Filgrastim standard was obtained from Pooyesh Darou 
Company (Iran).

Peptide mapping with RP-HPLC
Peptide map analysis is an important analytical technique 

widely used to verify protein primary structures. The 
method is capable of specifically detecting and quantifying 
structural alterations in the recombinant proteins, such 
as those derived from N-terminal blockage, oxidation, 
proteolysis, or amino acid substitutions. To identify the 

B
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structure and fundamental variations, RP-HPLC was 
used (17, 18). In this test, standard and sample proteins 
were digested by glutamyl endopeptidase for 18 hours 
at 37˚C and then analyzed by HPLC. The HPLC 
system (Agilent, USA) included a system controller, a 
pump, a degasser, the auto-sampler, and a photodiode 
array (PDA) detector. The detector was set at 214 nm 
and the peak regions were integrated by computational 
analyses. Experiments were done using a C18 column 
(100× 2.1 mm, 5 µm particle size, with 300 A° pore 
size). The HPLC test was performed at 60˚C, using 
acetonitrile as the mobile phase. The standard and the 
sample were at the concentration of 25 µg per 10 µL, 
and all determinations were carried out in triplicate. 
The flow rate was 0.2 mL/minutes. 

Retrieval of protein sequences and 3D structures
The protein sequences of G-CSF and G-CSFR were 

achieved from UniProt (http://www.uniprot.org/). The 
protein sequences were retrieved in the FASTA format 
in order to be analyzed by the computational methods. 
Also, the crystal structure of G-CSF and G-CSFR from 
the PDB data storage site with the codes 1GNC and 
2D9Q, was obtained; finally, it was used as the primary 
structure for the MD simulation. Likewise, sequences of 
inteins (Ssp DnaB and Mxe GryA) were obtained from 
InBase database (New England Biolabs Intein Database 
available at http://www.inteins.com/) and used in the MD 
Simulation (19-21).

Molecular dynamics simulation 
MD simulation was performed by Gromacs 4.6.4 

package using GROMOS96 (53a6) (19).  In this 
test, effect of DTT (40 mM) and pH exchange was 
studied on the protein structure and stability and 
also the effect of extra cysteine on G-CSF stability 
and its GCSF-R binding was evaluated. The protein 
topology file for Gromacs was provided utilizing the 
program Topolbuild, developed by Bruce D. Ray. All 
systems were solvated by explicit solvents (TIP3P) 
and counter ions were added to neutralize each system. 
Next, the energy minimization (EM) was performed 
by the steepest descent algorithm at tolerance value 
of 100 kJ/mol.nm. Also, EM was followed by the 
equilibration with position restraint on the protein 
molecule for 0.5 ns using Constant temperature and 
volume (NVT) and Constant temperature and pressure 
(NPT) ensembles by standard coupling methods. 
Then, main runs were performed without any restraint 
on the protein molecule, trajectories were generated 
with a time interval of 0.01 ns, and frames were 
saved at every 0.01 ns. Particle mesh ewald (PME) 
summation was used to assess long-range Coulomb 
interactions (20). In the equilibration and subsequent 
production runs, the internal degrees of freedom of 
the solvent molecules were restrained by the SHAKE 
algorithm (21), and all bond lengths were restrained 
in the macromolecules via the LINCS algorithm (22). 

All analyses were provided by Gromacs toolbox and 
the images were produced by PyMol (23) and LigPlot 
(24).

Results
Detection of E. coli host cell proteins in the purified 
rh-G-CSF solution

E. coli HCP were detected by the immunoenzymetric 
assay kit (Cygnus, USA). The results indicated that HCP 
was less than 100 ppm/dose and thus, they were in the 
permissible range (data not shown). 

Bacterial endotoxins
The number of bacterial endotoxins was determined by 

the LAL kit (Lonza, Switzerland). The results showed that 
the amount of E. coli endotoxins was less than 2 IU/mg 
protein. 

Impurities with charges that were different from those 
of Filgrastim (Isoelectric focusing)

IEF was performed using a pH=3-10 IEF gel. Filgrastim 
main bond in the standard and purified sample was stopped 
at pH=6.1; also, no band was more intense than the chief 
one in the electropherogram attained with the reference 
solution (PDgrastim) (Fig.2).

Fig.2: Isoelectric focusing of purified rh G-CSF and PDgrastim (standard) 
in the strips of pH=3-10. Both of the standard and purified proteins 
were stopped in pH=6.1 and no impurity or no band was found. G-CSF; 
Granulocyte colony-stimulating factor.

Peptide mapping

To confirm the protein structure and identify 
modifications, peptide mapping and RP-HPLC were 
done (18). The chromatogram attained with the reference 
solution was similar to that of the purified G-CSF. 
The chromatogram obtained with the test solution 
corresponded to that of the chromatogram achieved with 
the reference, but they were not exactly the same (Fig.3). 
This discrepancy could be due to the fact that the enzyme 
did not affect the purified protein or changed the amino 
acid content.

Molecular dynamic simulation 

The crystal structure of proteins was attained from 
PDB. Visualization of the proteins model was done by 
Chimera (version 1.8). To determine the structural and 
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functional differences between G-CSF and cysteine-
G-CSF and to find their differences in binding 
GCSF-R, MD simulation studies were performed. The 
simulations were carried out for all of the mentioned 
structures, as mentioned in the Materials and Methods 
section, under explicit solvent conditions. The 
trajectory results obtained from MD simulation were 
evaluated for RMSD and RMSF.

Fig.3: The reversed phase HPLC chromatogram for the Endopeptidase 
digest of purified rh G-CSF in comparison with standard rh G-CSF. A. 
Peptide map chromatograms of PDgrastim and B. Purified rh G-CSF. 
G-CSF; Granulocyte colony-stimulating factor.

The effect of dithiothreitol on the protein stability and 
receptor binding 

The Figure 4A depicts the RMSD variations during 
the simulation of G-CSF protein in the presence and 
absence of DTT. As shown in Figure 4A, protein in the 
presence of DTT was more unstable and its RMSD was 
greater than that in the non-DTT state. Likewise, the 
RMSF graph showed that in the presence of DTT, the 
protein’s flexibility was increased in certain regions 
(Fig.4B). 

As shown in the RMSF diagram, in the residues 1 to 
40, as well as 65 to 80, the presence of DTT led to a 
dramatic increase. As shown by the RMSD and RMSF 
diagrams, the presence of DTT increased protein 
flexibility. Additionally, the stability of the G-CSF 
protein, when bound to GCSF-R, was monitored in 
the presence of DTT. For this reason, in this part, the 
RMSF diagram of the GCSF protein was analyzed in 
the complex mode with GCSFR in the presence of 
DTT (Fig.4C).

As shown in this diagram, DTT increased the 
protein’s flexibility in all its amino acids. This increase 

in flexibility could probably cause the GCSF- GCSFR 
complex to become unstable and reduce the binding 
affinity between the two proteins.

The effect of the residual cysteine on the protein 
stability and receptor binding 

After G-CSF purification, it was possible to keep 
the extra cysteine in the N-terminal of G-CSF. Hence, 
to study the effect of this amino acid on the protein 
stability and receptor binding, we performed the 
computational analysis. The Figure 4D shows the 
variations of the RMSD associated with the natural 
GCSF protein and the cysteine residue. As shown, the 
presence of cysteine residue in the protein significantly 
reduced the RMSD level and stabilized the protein 
over time. 

The graph shows the flexibility of the residues for a 
natural and atypical protein (containing cysteine). As 
shown in the RMSF diagram, the total flexibility of the 
structure in the atypical state was reduced, as compared 
with the normal one, and this reduction was significant in 
the early amino acid sequence of the protein. Analysis of 
the two above-mentioned graphs shows that the presence 
of cysteine residues reduced the flexibility and stability of 
the G-CSF structure (Fig.4E).

A

B

A

B
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Fig.4: Results of molecular dynamic simulation of RMSF and RMSD 
diagram. A. Comparison of RMSD changes. The simulation of G-CSF 
protein in the presence and absence of DTT, B. Comparison of the RMSF 
diagram of G-CSF in the presence and absence of DTT, C. RMSF diagram 
of GCSF protein in complex with GCSFR in the presence of DTT, D. The 
RMSD variations associated with the natural GCSF protein and GCSF have 
Cysteine amino acid, and E. RMSF diagram shows flexible amount of 
single amino acids for normal and atypical protein (contains cysteine). RMSF; 
Root-mean-square fluctuation, RMSD; Root-mean-square deviation, G-CSF; 
Granulocyte colony stimulating factor, and DTT; Dithiothreitol.

Discussion

rh-G-CSF is widely used as a useful hematopoietic 
growth factor. Therefore, production of rh-G-CSF seems 
to be required. Hence, it was decided to analyze rh-G-CSF 
that had already been produced in E. coli with laboratory 

and in silico methods.  Formerly, we produced G-CSF 
linked to intein (9). The intein segments were preferably 
used for better expression and purification due to their 
low molecular weight, resulting in a high percentage of 
small G-CSF as fusion protein. Xie et al. (10) cloned 
OG2 antimicrobial peptide in the pTWIN1 vector with 
two different intein segments and achieved high-rate 
expression and production of the recombinant protein. 
They achieved purified proteins with extra cysteine in 
the N-terminal. We also implemented this procedure to 
purify rh-G-CSF with chitin beads, achieving G-CSF and 
cysteine-GCSF. Then, we analyzed the purified G-CSF 
for impurities using IEF and HCP determination tests, 
also the structure was analyzed using peptide mapping. 
Our results were comparable with those achieved by Kim 
et al. (18). This was because they could produce G-CSF 
in E. coli with good quality and no impurity. Additionally, 
we investigated the effect of DTT (used for purification) 
and extra cysteine on stability and function of G-CSF. 
The results displayed that the purified G-CSF had 
characteristics similar to those of the standard, and DTT 
reduced G-CSF stability and increased its flexibility. Also, 
our studies showed that the residual cysteine   increased 
the stability and reduced flexibility; therefor e , it might 
not affect receptor binding. The results of computational 
studies of this protein   were shown to be consistent with 
those of laboratory studi e s and the biological  activity 
of this protein. In this way, the presence or absence of 
cysteine   could not have  any important effect  on the 
biological activity of protein. Comparison of GCS-F and 
cysteine-GCSF results revealed that both of them were 
stable and probably had similar functionality. It was even 
imaginable that the modified protein had higher biological 
activity; w e previously o bserved that cystein e -GCSF 
biological  activity was higher than that of the standard 
G-CSF (9). 

Conclusion
The inform ation displayed here may be important 

to biophar maceutical companies to produce new 
recombinan t proteins using new techniques. Despite 
various ap plications of MD simulation in protein 
engineering, no similar research was done on this protein. 
Therefore, studying the structural dynamic properties of 
this prote in under different conditions provided a new 
opportunity to study the stability and function of G-CSF. 
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