Gene Expression Patterns of Royan Human Embryonic Stem Cells Correlate with Their Propensity and Culture Systems

Document Type : Original Article

Authors

1 Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran

2 Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran

3 Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran;Department of Systems Biology, Agricultural Biotechnology Research Institu

4 Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran;5Department of Developmental Biology, University of Science and

Abstract

Objective
Human embryonic stem cells (hESCs) have the potential to give rise to all types of cells in the human body when appropriately induced to differentiate. Stem cells can differentiate spontaneously into the three-germ layer derivatives by embryoid bodies (EBs) formation. However, the two-dimensional (2D) adherent culture of hESCs under defined conditions is commonly used for directed differentiation toward a specific type of mature cells. In this study, we aimed to determine the propensity of the Royan hESC lines based on comparison of expression levels of 46 lineage specific markers.
Materials and Methods
In this experimental study, we have compared the expression of lineage-specific markers in hESC lines during EB versus adherent-based spontaneous differentiation. We used quantitative real-time polymerase chain reaction (qRT-PCR) to assess expressions of 46 lineage-specific markers in 4 hESC lines, Royan H1 (RH1), RH2, RH5, and RH6, during spontaneous differentiation in both EB and adherent cultures at 0, 10, and 30 days after initiation of differentiation.
Results
Based on qRT-PCR data analysis, the liver and neuronal markers had higher expression levels in EBs, whereas skin-specific markers expressed at higher levels in the adherent culture. The results showed differential expression patterns of some lineage-specific markers in EBs compared with the adherent cultures.
Conclusion
According to these results, possibly the spontaneous differentiation technique could be a useful method for optimization of culture conditions to differentiate stem cells into specific cell types such ectoderm, neuron, endoderm and hepatocyte. This approach might prove beneficial for further work on maximizing the efficiency of directed differentiation and development of novel differentiation protocols.

Keywords