Improved Survival and Hematopoietic Differentiation of Murine Embryonic Stem Cells on Electrospun Polycaprolactone Nanofiber

Document Type : Original Article

Authors

1 Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

2 Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran;Iran Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran

3 Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran

4 4Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran

5 Iran Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran

Abstract

Objective
Three-dimensional (3D) biomimetic nanofiber scaffolds have widespread ap- plications in biomedical tissue engineering. They provide a suitable environment for cel- lular adhesion, survival, proliferation and differentiation, guide new tissue formation and development, and are one of the outstanding goals of tissue engineering. Electrospinning has recently emerged as a leading technique for producing biomimetic scaffolds with mi- cro to nanoscale topography and a high porosity similar to the natural extracellular matrix (ECM). These scaffolds are comprised of synthetic and natural polymers for tissue engi- neering applications. Several kinds of cells such as human embryonic stem cells (hESCs) and mouse ESCs (mESCs) have been cultured and differentiated on nanofiber scaffolds. mESCs can be induced to differentiate into a particular cell lineage when cultured as em- bryoid bodies (EBs) on nano-sized scaffolds.
Materials and Methods
We cultured mESCs (2500 cells/100 µl) in 96-well plates with knockout Dulbecco’s modified eagle medium (DMEM-KO) and Roswell Park Memorial Institute-1640 (RPMI-1640), both supplemented with 20% ESC grade fetal bovine serum (FBS) and essential factors in the presence of leukemia inhibitory factor (LIF). mESCs were seeded at a density of 2500 cells/100 µl onto electrospun polycaprolactone (PCL) nanofibers in 96-well plates. The control group comprised mESCs grown on tissue cul- ture plates (TCP) at a density of 2500 cells/100 µl. Differentiation of mESCs into mouse hematopoietic stem cells (mHSCs) was performed by stem cell factor (SCF), interleukin-3 (IL-3), IL-6 and Fms-related tyrosine kinase ligand (Flt3-L) cytokines for both the PCL and TCP groups. We performed an experimental study of mESCs differentiation.
Results
PCL was compared to conventional TCP for survival and differentiation of mESCs to mHSCs. There were significantly more mESCs in the PCL group. Flowcyto- metric analysis revealed differences in hematopoietic differentiation between the PCL and TCP culture systems. There were more CD34+(Sca1+) and CD133+cells subpopulations in the PCL group compared to the conventional TCP culture system.
Conclusion
The nanofiber scaffold, as an effective surface, improves survival and differentiation of mESCs into mHSCs compared to gelatin coated TCP. More studies are necessary to understand how the topographical features of electrospun fibers af- fect cell growth and behavior. This can be achieved by designing biomimetic scaffolds for tissue engineering.

Keywords