Pyocyanine Biosynthetic Genes in Clinical and Environmental Isolates of Pseudomonas aeruginosa and Detection of Pyocyanine’s Antimicrobial Effects with or without Colloidal Silver Nanoparticles

Document Type : Research Article


1 . Department of Microbiology, Islamic Azad University, Tehran North Branch, Tehran, Iran

2 . Department of Microbiology, Islamic Azad University, Tehran North Branch, Tehran, Iran ;. Young Researchers Club, Islamic Azad University, Tehran North Branch, Tehran, Iran


Pyocyanine plays an important role in the pathogenesis of Pseudomonas aeruginosa, (P. aeruginosa) and is known to have inhibitory and bactericidal effects. This study has aimed to detect the phenazine biosynthetic operon (phz ABCDEFG) and two phenazine modifying genes (phzM and phzS) by polymerase chain reaction (PCR) and detection of its possible protein bands by sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE). The antimicrobial effects of pyocyanine alone and mixed with colloidal silver nanoparticles were studied. Materials and Methods: In this descriptive study, clinical and environmental species of P. aeruginosa were isolated by thioglycollate medium culture and cetrimide agar, respectively. The existence of a phenazine biosynthetic operon and two phenazine modifying genes as well as their protein products were confirmed by PCR and SDS-PAGE, respectively. Pyocyanine was extracted with chloroform and its antimicrobial effects against bacteria such as; Escherichia coli (E. coli), P. aeruginosaand Staphylococcus aureus (S. aureus) bacteria and yeast Candida albicans (C. albicans) were tested using well, spot and disk diffusion methods. Results: In this study, 3 out of 48 clinical strains were unable to produce pyocyanine on cetrimide and Mueller Hinton (MH) agar. Two strains did not have phenazine modifying gene bands. Another strain did not have the possible protein band of the phzM gene. Pyocyanine had antimicrobial effects against the microbial strains, which increased in the presence of silver nanoparticles. Conclusion: According to the results of the present study, some P. aeruginosa strains are unable to produce pyocyanine due to the absence of the phzM or phzS genes. Therefore, these genes have an important role in pyocyanine production in P. aeruginosa. Pyocyanine shows synergistic antimicrobial effects in the presence of silver nanoparticles against microbial strains.