
 نمى شوند. DCs جدا شده در اين تحقيق، در طـى مسير غنى سـيز ازى بـالغ و فعال نشده، از لحاظ انـدازه در حـد لنفوسيت متوسط و فـاقد زايـده بـوده، در عـين حـال مـيزان ابـراز HLA-DR بر آن زيـاد نبوده (مـتوسط خـلوص به دست آمـده در ايـن تـحقيق، مـشابه مـطالعات مشابه خارجى است. در مطالعاتى كه Livingstone و همكاران كه از

 تحقيق حاضر ميزان خلوص حدود •ودرصد مىباشد.

 سلولهاى دندريتيك امروزه به عنوان عامل بسيار مهم در واكسينىا واكيناسيون

 مـطرح مـى باشد. جــاى خـالى تـحقيقات در ايـن زمـــينه در كـشور
 روشى مناسب جهت تأمين DCs در تحقيقات آينده خواهد بود.

تقدير و تشكر

تحقيق فوق بخشى از طرح تحقيقاتى مشترك بين سازمان انتقال خون ايـران - مركزتحقيقات، مركز تـحقيقات هماتولوزى و انكولوزئى

 پششتيبانى طرح تشكر و قدردانى شود.

از كشت شبانه كاهش يافته (YY) و مىتوان از موادگراديان ساز مانند متريزامايد و نايكودنز براى جداسازى DCs استفاده نمود .تحقيقات

 در اين روشها نيز DCs جدا شده از لحاظ ماهيت و عملكرد با Adherence depletion اوليه تـناوت دارنــد زيـرا هــمانند روش
 وخاصيت دست نخوردهٔ خود را از دست مىدهد. در عين حال چون
 يكسان كاهش نمى يابند، DCs جدا شده نمايندهٔ همؤ زير گرووههاى نخواهند بود (11). علاوه بر اين شواهدى مبنى بر القا تغييرات
 مانند متريزامايد وجود دارد (•).
 مــىتوان از روش panning نــام برد. در ايــن روش ســــــلولهاى غير

 حــذف مىشوند (Y9). مـشـكل ايــن روش هــــمانند روشهـاى قبلى، دستکارى شـدن سـلول در اثر كشت شـبانه و وجود گزارشـاتى مـبنى بـر بـــى FCR تـعدادى از ســلولهاىDC است. بــراســاس ايـن گزارشــات روش Panning
 است (•Y).

روش Immunomagnetic depletion روش مــناسبى بــراى
جداسازى DCs تازه از خون محيطى است .اين روش در مقايسه با روشـهاى كــلاسيك جــداسـازى DC كه از كـشت in vitro، مـواد
 به حــنف زيرگروه خــاصى از DCs و القــا بــلوغ در آنــهـا نشده، DCs نياز به وقت كمترى داشته، سـادهتر بـوده و در عين حال جپن

References

1. Steinman RM: Dendritic cells. In "Fundamental Immunology" (Paul WE ed.), $4^{\text {th }}$ ed, Lippincott-Raven, Philadelphia, 1999; 547-574
2. Robinson SP: Identification and immunophenotypic analysis of peripheral blood dendritic cells. In "Dendritic cell protocols" (Robinson SP and stagg AJ eds.) 1. Humana press, New Jersey, 2002; 111-199
3. Romani N, Holzmann S, Tripp CH, Koch F, Stoitzner P: Langerhans cells-dendritic cells of the epidermis. APMIS. 2003; 111(7-8): 725-740
4. Hart DNJ: Dendritic cells and their emerging clinical applications. Pathol. 2001; 33: 479-492

5. Strobl H, Scheinecker C, Riedl E,Csmaritis B,BelloFernandez C, Pickl WF, Majdic O, Knapp W: Identification of $\mathrm{CD} 68^{+}$in peripheral blood cells with dendritic precursor charcteristics. J Immunol. 1998; 161(2);740-748
6. Banchereau J, Briere F, Caux C, Davoust J, ebecque S, Liu YJ, Pulendran B, Paluka K: Immunobiology of dendritic cells. Ann Rew Immunol. 2000; 18: 767-811
7. Thomas R, Lipsk PE: Human peripheral blood dendritic cell subsets. J. Immunol. 1994; 153: 4016-4028 8. Yrlid U, Macpherson G: Phenotype and function of rat dendritic cell subsets. APMIS. 2003; 111(7-8):756-765
8. Kuwana M : Induction of anergic and regulatory T cells by plasmacytoid dendritic cells and other dendritic cell subsets. Hum Immunol. 2002; 63(12): 1156-1163
9. Vieweg J, Dannull J: Tumor vaccines: from gene therapy to dendritic cells-the emerging frontier. Urol Clin North Am. 2003; 30(3); 633-643
10. Svane IM, Soot ML, Buus S, Johnsen HE: Clinical application of dendritic cells in cancer vaccination therapy. APMIS. 2003; 111(7-8): 818-834
11. Cho HJ, Bhardwaj N: Against the self: dendritic cells versus cancer. APMIS. 2003; 111(7-8): 805-817
12. Bubnoff DV, Koch S, Bieber T: Dendritic cells and atopic eczema / dermatitis syndrome. Curr Opin Allergy Clin Immunol. 2003; 3(5): 353-358
13. Kavanaugh A: An overview of immunomodulatory intervention in rheumatoid artheritis. Drugs Today. 1999; 35(4-5): 275-286
14. Kolb-Maurer A, Kurzai O, Goebel W, Frosch M: The role of human dendritic cells in meningococcal and listerial meningitis. Int J Med Microbiol. 2003; 293(4): 41249
15. Buentke E, Scheynius A: Dendritic cells and fungi. APMIS. 2003; 111(7-8): 789-796
16. Lore K, Larsson M: The role of dendritic cells in the pathogenesis of HIV-1 infection. APMIS. 2003; 111(78): 776-788
17. William LA, Egner W, Hart DNJ: Isolation and funtion of human dendritic cells. Int Reu Cytol. 1994; 153; 41101
18. McLellan AD, Starling GC, Hart DNJ: Isolation of human blood dendritic cells by discontinuous nycodenz gradient centrifugation. J. Immunol. Methods. 1995; 81: 184-189
19. O'Doherty U, Steinman RM, Peng M, Cameron PU, Gezelter S, Kopeloff I, Swiggard WJ, Pope M, Bhardwaj N : Dendritic cells freshly isolated from human blood express CD4 and mature into typical immunostimulatory dendritic cells after culture in monocyte-conditioned medium. J Exp Med. 1993; 17(3): 67-1078
20. McLellan AD, Starling GC, Williams LA, Hock BD, Hart DNJ: Activation of human peripheral blood dendritic
cells induces the CD86 co-stimulatory molecule Eur JImmunol. 1995; 25: 2064-2068
21. Loken MR, Green CL, Wells DA: Immunofluorescence of surface markers. In:"Flow Cytometry-A Practical Approach (Ormerod MG ed.) $3^{\text {th }}$ ed, 2000; 6182
22. Van Voorhis WC, Hair LS, Steinman RM, Kaplan G: Human dendritic cells. Enrichment and characterisation of human peripheral blood dendritic cells. J Exp Med. 1982; 155: 1172-1182
23. Xu H, Friedrichs U, Gieseler RK, Ruppert J, Ocklind

G, Peters JH: Huamn blood dendritic cells exhibit a distinct T-cell stimulating mechanism and differentiation pattern. Scand J Immunol. 1992; 36: 689-696
25. Knight SC, Farrant J, Bryant A, Edwards AJ, Burman S, Lever A, Clarke J, Webster AD: Nonadherent, low density cells from human peripheral blood contain dendritic cells and monocyte, both with veiled morphology. Immunology, 1986; 5: 595-603
26. Brooks CF, Moore M: Differential MHC Class II expression on human peripheral blood monocytes and dendritic cells. Immunology 1988; 63: 303-311
27. Livingstone WJ, Moore M, Innes D, Bells JE, Simmonds P: Frequent infection of peripheral blood CD8 positive T-Lyphocytes with HIV-1. Lancet 1996; 348; 649-654
28. Fearnley DB, McLellan AD, Mannering SI, Hock BD, Hart DN: Isolation of human blood dendritic cells using the CMRF-44 monoclonal Antibody: Implications for studies on Antigen-presenting cell function and Immunotherapy. Blood 1997; 89(10): 3708-3716
29. Tatsumi T, Storkus WJ: Dendritic cell-based vaccines and therapies for cancer. Expert Opin Biol Ther. 2002; 2(8): 919-928
30. Sundquist M, Johansson C, Wick MJ: Dendritic cells as inducers of antimicrobial immunity in vivo, APMIS. 2003; 111(7-8): 715-724
31. Carbone FR, Heath WR: The role of dendritic cell subsets in immunity to viruses. Curr Opin Immunol. 2003; 15(4): 416-420

اثر همافزايى سيكلوسپورين A به همراه فاكتورهاى رشد خونساز بر روى تكثير سلولهاى مغز استخوان انسان در كشت طولانى مدت مغرا مغزاستخوان و كشت كلونال در محيط نيمهجامد Tگار

 پست الكترونيك: pourf@modares.ac.ir

* هـدف: بررسى اثرتحريك خونسازى ياعدم تحريك خونسازی سيكلوسبورين A Aمراه با فا فاكتو رهاى رشد خونسازى
 تكثير سلولهاى خونساز مغز استخوان
* مـواد و روشــها: جمعيت مورد مطالعه را به طور تصادفى از داوطلبان سالم دهنده مغز استخوان در گروه سنى

 سلولهاى خونساز توسط ميكروسكوپ معكوس (Invert) انجام شـد و جهـت مشاهـها مورفولوزى سلولهاى خونساز توسط سايتواسين لام تهيه و رنگگ آميزى گرديد * يـافته هـا: در اين مطالعه افزايش سلولهاى تشكيلدهنده كلنى خونساز در محيط كشت حاوى سيكلوسيورين (CyA) A)،

 (P (A) به عنوان سطح معنىدارى استفاده شد.
 رشد خونساز بر روى مسير هاى نسخهبردارى و ارسال پيام جهت حيات و تكثير سلولهاى خونساز صورت بخيرد.

> Zَل و/ڭگان: فاكتورهاى رشد ،كشت طولانى مدت مغز استخوان ، سيكلوسيورين A

حفظ حيات و تكثيرسلولهاى خونساز وترشح سايتوكاينها مى گردد(1)

 سـيكلوسيوريـن A به عـنوان يك داروى ايـمونوسوپرسيو بـطور گـسترده
 شـرايط خـارج بـدن (In vitro) سبب تـحريك رشد سلولهاى خونساز

مقدمه
سلولهاى خونساز اوليه در حالت استراحت (خاموش) داراى قدرت توليد تعداد زيادى سلولهاى خونى هستند. خاصيت خوديا تـــمايز ســـلولهاى خــونساز مــادر اوليه (Stem cell) در ريــزمحيط مــغزاسـتخوان(Microenvironment)ايــجاد مـــشود. اسـتغاده از كشت طـولانىمدت مـغزاستخوان مـدل مـناسبى بـراى مشخصص نـمودن نقش ريزمحيط مغزاستخوان است و سبب تشكيل لايه تغذيه كننده براى

فاكتورهایى رشد

فـاكتورهاى رشــد مـغنى در مــحيط كـشت LTBM و در مــــيط
 اينترلوكين r(I L-3)، اينترلوكين و(IL-6)، استم سل فاكتور (SCF)
 , غــــلظت (Sigma) $1 \cdot \cdot \mathrm{ng} / \mathrm{ml}$, \qquad (GM-CSF)
با غلظت (Sigma)PHA- LCM

A سيكلوسپپرین

بــود كه تـــوسط اتــانل •9 درجه بـــا رقت جـــهت كـــشت LTBM و كـــشت كــــلونال (Y) به كـــــارگرفته

شد (Y)

PHA- LCM

 IMDM V روز در دماى VV

 سـانترفيوز گـرديد سـس جـهـهت اسـتريل كـردن از فـيلتر ب/ • مـيكرون استفاده گرديد (^). جهت ارزيابى عوامل مهاركننده رشد در اين محيط

 Condition medium active قرار داده نشد به عنوان Condition medium inactive درارزيابى كلنى استفاده نموديم.

كشت طولانى مدت مغزاستخوان

تـعداد توسط لام نئوبار در پـليت كشت Y\& خـانـانه (Nunck) به هـمراه مـحيط

 IL-3,IL-6,SCF سلولهاى غيرچحسبان برداشت شـده درفواصل هـر هفته توسط لام نئوبار FBS همراه با ب درصد IMDM شمارش شده و سپس دوبار با محيط شسته شد.

[^0]پس از تزريق در مـحيط داخل بدن (In vivo) مى گردد. همحچنين اثر وابسته به دوز CyA درافزايش تحريك تشكيل كلنى سلولهاى خونساز موش در محيط نيمهجامد متيل سلولز مورد مـون مطالعه قرارگرفت ورفت و به نظر مـىرسد سـيكلوسيورين A عـامل مـهار زن ايـترفرون گاما (

 تحريك خونسازى در محيط داخل بدن (In vivo) و تشكيل كـنـي

 تحريك سلولهاى خونساز در محيط نيمه جامد آكار از محيط مغذى از فـاكتورهاى رشــد كه در مـحيط PHA-LCM سـاخته شــد، اسـتفاده

 سلولهاى خونساز در حضور فاكتورهاى رشد خونساز مشاهده گرديد ،
 سـلولهاى خـونساز در مـحيط مـغنىي (PHA-LCM) سـاخته شــده در محيط آزمايشگاه در مقايسه با فاكتورهاى رشد نوتركيب برروى كشت سلولهاى خونساز ارزيابى شد

مواد 9 (وشها
سلول مغزاستخوان

 كميته مركز تحقيقات پيوند مغزاستخوان (A. توسط سرنگك هيارينه () (1) از ناحيه تا تا خلفى -فوقانى ايلياك
 (پulcon)

 انجام شد.

محيط كثت

 ســرم اسب(Sigma) ه/ آدرصـد (Gibco)FBS) '، هـيدروكورتيزون (Sigma) (Sigma)
 (Sigma)rm g/ ml

لايه استروما است در شكل（1－الف）مشاهده مىشود．افزايش سلولهاى
 CobbleStone بيان كنتده فعاليت خونسازى و تكثير سلولهاى خونساز در محيط كشت
 منونوكئار مغز استخوان در مـحيط كشت LTBMC تـحريك شـده و تحريك نشده در جـدول ا آورده شـده است．در شروع آزمايش به هـر
 مربوطه و سيكلوسيورين A مطابق با جدول（ الضافه شده است．نمودار
 فاصله \uparrow هفته مطابق جدول ا 1 ر محيط LTBMC است．ميانگين تعداد سلولها در هرمحيط كشت به طور جدا گا انه محاسبه شد（ميانگين سلولى

 l－test

 يكديگر انجام شد، و افزايش حاوى IL－3，IL－6，SCF，CyA بـا ميانگين 1／10 ا ا نسبت به مـيط
 فاكتور رشد باميانگين＾Y／＾مشاهـاهده شد．
 مغزاستخوان در فاصله جهار هفته در محيط LTBM（x）．．．．．．

جهارم	سوم	دوم	اول	هفته
入1 \pm ，	1ヶ／Yさr／4	1／／r \pm／$/ 0$	$\wedge \Delta \pm 10$	（A）كنترل
llẏrı	v9／＾さrı／¢	$r \mathrm{D} / \Psi \pm \mathrm{N} / \mathrm{r}$	1．rır．	（B） $\mathrm{LL}-3, \mathrm{LL} 6, \mathrm{SCF}$
Mr．trr	AY／q̇r．	D．$\pm 1 \cdot / \wedge$	1QY \pm ¢／／A	（C）IL－3，IL6，SCF，CyA
99 ± 1 ．	Y－／$/ \pm \boxed{\text {／} / ¢ ~}$	r $\omega \pm \uparrow / \Lambda$	Irlay	（D） CyA

تكثثير CFU－C حـاصل از سـلولهاى غـيرچسبان مـيط كشت LTBM در محيط نيمه جامد آگار

 تتايج حاصل از كشت سلولهاى غير خسبان در مـحيط نيمه جام
 جـدول ب نشان داده شـ．تعدادسلوله

 IL－3，IL－6，SCF，CyA

كشت كلونال سـلولهاى غيرچسبـان كشت طولانى مدت مغزاستخوان تعداد ．．．．．سلول شسته شده غير حسبان در هر ميلى ليتر به همراه
 （ ادرصد）و فاكتورهاى رشد خونساز I ng／ml）IL－3 ，IL－6，SCF

 روز در مـحيط rV درجه سـانتى گراد و فـشار ها درصـد

 نمونه بردارى كرده و شمارش سلولى انجام داده و جهت تهيه لام توسط

شد، ولى از نتايج به علت كمبود امكانات عكس گرفته نشد（＾）．

 PHA－LCM，IL－3，IL－6，SCF，GM－CSF，Cy A

در اين مطالعه جهت بررسى اثر سيكلوسيورين A A برروى كشت

 （ $1 . . \lambda / \mathrm{ML}$ ）PHA－LCM（ $1 . \cdot \mathrm{ng} / \mathrm{ml}$ ）GM－CSF．（ $1 \cdot \mathrm{ng} / \mathrm{ml}$ ） （ و فشار ها درصد Co
 مشاهده و شمارش كلنىها انجام شد．

حافتهها

 تــكثير ســلولهاى مـنونوكلئار مـغزاسـتـتخوان در مــحيط كشت LTBM تحريكشده و تحريكنشده

 كشت حـاوى CyA و مـحيط كـشت بــدون فـاكتوهاى رشـد و CyA مشاهده شد．تشكيل لايه تغذيه كنتده（Feeder）و چسسيدن سلولهاى
 دهـنده چسبيدن سـلولهاى مغز استخوان به كف پـليت كشت و تشكيل

: محيط كتترل: A
IL-3, IL-6, SCF محيط :B
IL-3, IL-6, SCF, CyA محـيط:C
CyA محيط:D

نمودار r: مقايسه ميانگين تعداد كلنى كرانولوسيت- منوسيت حاصل از سلولهاى غيرجسبان درمحيط كشت نيمهجامد آكار

شكل r r-الف: تشكيل كلنى خونساز گُرانولست -منوسيت پس از با روز در محيط نيمهجامد آكار

جدول r: مقايسه نتايج آمارى تعداد كلنى كرانولوسيت- منوسيت حاصل از سلولهاى غيرحسبان درمحيط كثت LTBM

جهارم	سوم	دوم	اول	هفته
$r \cdot / 4 \pm \pm$.	Y $\ / \wedge \pm 19$	$r \cdot \pm \mathrm{v} / \mathrm{l}$	10/A \pm / $/ Y$	(A) كنترل
$r \cdot / 9 \pm 9 / r$	rN/Y \ddagger IV	$r \cdot / 4 \pm \cdot / \Delta$	$1 r / r \pm 9 / r$	(B)IL-3,LL-6,SCF
$9 \mathrm{~L} / \mathrm{Y} \pm \mathrm{r}$.	94tir	$r 9 / Y \pm 10$	$\psi-/ \psi \pm 1$.	(C)IL-3,LL-6, SCF, СуA
$0 \cdot / 4 \pm 11$	$\Delta 9 / 9 \pm 10 / \mathrm{r}$	$r \Delta \pm \mathrm{v} / \Delta$	$r \wedge / r \pm 10 / r$	(D) CyA

CFU-C بررسى تكثير سلولهای تشكيلدهنده كلنى

 در محیط نـيمهجامد آكارتكثير كلنى هاى خونساز GM-CFU در محيط كشت حاوى
PHA-LCM (Active) به \qquad ; PHA-LCM (Inactive)

 در مـحيط حــاوى IL-3,IL-6,SCF ,GM-CSF نـسبت به مــحيط حـــاوى IL-3,IL-6,SCF,Cy A و افــــزايش كــــلنى در مــــحيط

 رشـد IL-3,IL-6,SCF بـر روى كـشت سـلولهاى تـشكيل دهـنـه كـلنى است كه اين نتايج (M (M SD) در جدول ب نشان داده شده است.

گــرانــولوسيت- مــنوسيت حــاصل از ســلولهاى غــير جسبان نــمونه مغزاستخوان كشت داده شده در محيط نيمه جامد آگار است.

LL-3, IL-6, SCF
IL-3, IL-6, SCF مسيط:B

نمودار ا: مقايسه ميانگين تعداد سلولهاى غيرچسبان در محيط كشت (A,B,C,D) LTBM

شكل ا الف: تشكيل لایه Feeder و چسبيدن سلولهاى مغزاستخوان به لايه LTBMC در هفته دوم Feeder

شكل ا ب: كشت طولانى مدت مغزاستخوان در هفته چپهارم و تشكيل نواحى Cobbleston به همراه فيدر لاير و سلولهاى آديپوسيت

تكثير كلنى ها در هـرمحيط كشت بـراى 9 نـمونه به طـور جـداگانه محاسبه شده و براى مقايسه محيط هاى مختلف جهت توزيع نرمال از
 معنىدار بودن تست در نظر گرفته شد.معنى دار بودن تتريكك سلولهاى
 تحريكك شده با يكديگر انجام شد. باتوجه به جدول افزايش قابل قبول تعداد كلنىها اتها در محيط به علت فـاكتو رهاى رشـد و CyA مـى. تـشكيل دهـنده كـلنى خـونساز از آزمـون مـستقل t-test اسـتفاده شـد و ميزان (a<•/ (P<) جهت معنىدار بودن استفاده مىشود.

اسـتم سـل هاى چون LTC-IC ,CFU-S مــل نــاقصى از هـماتويوئز
 در حمايت از رشد و پروليفراسيون سلول پروزنيتور به طور LTBMC عمده توسط شرايط كشت متغير است (9، • 1). تـوسعه روشـهاى In vitro كـشت ســـلولهاى خـونساز استتمسل و

 حاصل از اثر فعاليت لنفوسيتهاى Tواكنشدهنده فرد آنـــتى ثنـــهاى MHC مــــتخلف كه در فــــرد گ־ــيرنده پــيوند،

است (1) آ1 (1).
سـيكلوسيوريـن A بـراى مــدتهاى طـوـلانى به عــنوان يك داروى

 شناخته شده است (f).
 سيكلوسبورين A درمحيط كشت ارزيابى كلنى كه حاوى سلولهاى مغز

 اين ترتيب اثر مهارترشح فاكتور اينترفرون گاماتوسط سيكلوسيورين را بيان كردند (r)

 مقايسه با كشت كنترل را نشان دادندو جر جهت ارئرئ اريابى اثر سيكلوسيورين

 سيكلوسِورين A دست يافتند (19،14، 19). در اين مطالعه براى اولين بار كشت طولانى مدت و كشت كلونال
 و فــاكتورهاى رشــــد(IL-3,IL-6,SCF) در مــــايسه بـــا كشتهاى
مغزاستخوان بدون CyA بررسى شد.

 افـزايش
 CyA تمايز سلولهاى خونى در محيط كشت نسبت به محيط فاقد فاكتور رشد و سـيكلوسپورين است. هـمحنين افزايش كـلنى هاى خونساز در مـحيط حاوى سيكلوسيورين نسبت به ساير محيطهاى كشت نشاين نشان دهنده مهار فعاليت زُن فـاكتو رهاى مـهاركننده خـونسازى و تـاييدكنتده نـظريه نـتش

نمودار r: مقايسه نتايج آمارى تعداد كلى كرانولوسيت - منوسيت در محيط كثت نيمهجامد آكار

تعداد سلول در هر پيليت محيط كشت نيمهجامد آكار ه • ا× ا در هر

 گرانولوسيت-منوسيت حاصل ازكشت سلولهاى منونوكئئار در محيط نيمه جامد آكار است.

جدولr: مقايسه نتايج آمارى تعداد كلنى كرانولوسيت - منوسيت در مصيط كثت نيمهجامد آكارمغذى شده با PHA-LCM و فاكتورهاى رشد خونساز

تكثير كلنى ها در هرمحيط كشت به طور جدا گانه محاسبه شده و براى مقايسه محيط هاى مختلف جهت هـت توزيع نرمال از آزمون مستقل l-test در نظر گرفته شد.

محيطهاى كشت تحريك شده با يكديگر انجام مىشود.

بحث

 مغزاستخوان در كشت مغزاستخوان استفاده مى شود.اين محيط بـاتورئ به حمايت از رشد وپروليفراسيون و تمايز پرورزنيتورهاى كلونوزنيك و و

$$
\begin{aligned}
& \text { در اين محيط مشاهده شد. } \\
& \text { بـا تـوجه به ايـن مـطالعه كه بـراى اوليـن بـار بـر روى سـيستم كـشت } \\
& \text { طولانى مدت مغزاستخوان انسان انجام شد دريـچهاى اميل بخش جهت } \\
& \text { برداشتن گامهاى موثر براى نگڭهارى سلولهاى خونى مغز استخوان در } \\
& \text { جـهت زنتــرایـى سـلولهاى خـونساز اتـولوگك بـراى پيـيوند در افـراد بـيمار }
\end{aligned}
$$

$$
\begin{aligned}
& \text { بـا اسـتغاده از ســيكلوسپوريـن A به هــمراه فـا كتورهاى رشــد خــونساز } \\
& \text { درمحيط كشت مىتوان تعداد سلولهاى خونى را افزايش داد اما جهت } \\
& \text { اثبات تاثير سيكلوسپورين بر روى زنهاى تنظيم كننده فاكتو رهاى رشد }
\end{aligned}
$$

$$
\begin{aligned}
& \text { فاكتورهاى خونساز صورت بگیيرد . }
\end{aligned}
$$

گــــتردهتر بــر روى مــسيرهاى مــولكولى كه در بـــيان زن دخـــالت

در اين مطالعه با استفاده از محيط (Condition medium active
\& \& Condition medium inactive) افــزايش ســـلولهاى خـــونساز در مــحـيطهاى كــشـت مــغنـى شـــده بــا فــا كتورهاى رشـــد نــوتركيب (IL-3,IL-6,SCF) نــــبـت به
 (Condition medium active \& Condition medium inactive)
به عـلت غـلظت مـناسب و تـخليص شـده فـا كتو رهاى رشـد و عـدم وجـود عـوامـل مـهار كـنـنده رشـد است وهـمتحنين بـا اسـتفاده از از مـحـيط كـشت كاهش عوامـل مـهاركننده رشد

$$
\begin{aligned}
& \text { فـــاكتورهاى رشــــد است كه جـــهـت اثـــبات نـــــاز به مــــطالعات }
\end{aligned}
$$

References

1. Trentin JJ: Hemopoietic colony studies .V.Effect of Hemopoietic organ stroma on differentiation pluripotent Stem cell.J EXP Med 1958; 127:205
2. yonish-Roulch E, Meir shinitzky and MenashemRubinstein: A method for preparing biologically active aqueous cyclosporin A solutions avoiding the use of detergent or organic solvents.Journal of immunological methods.1990; 135: 147-153
3. Scottperry S, Mijung kim: Direct effect of cyclosporin A on proliferation of hematopoietic stem and progenitor cells.Cell Transplantation. 1999: 8:339-344
4. Quesniaux VF: Immunosuppressants:Tools to investigate the physiological role of cytokines. Bioessays. 1993: 15:731-739
5. Petzer AL: Hogg DE, Landsdorp P, Reid DS, Eavesc

J: Self- renewal of primitive hematopoietic cells (LTC-IC) invitro and their expansion in defined medium .Proc Natl Acadsci USA. 1996: 93:1470
6. Stephen J, Forman A, Karl C, Blume E, Donnall H: Bone Marrow Ransplantation. 1994: 53-66
7. Pazebork B, Bartuneck P, Mapava M, Zankem Y: Growth and differentiation of human stem cell factor \& EPO dependent erithroied progenitor cell in vitro .Blood. 1998: 2: 3658
8. Deil F, Chen X, Louda N, Zuch H, Schneider B: Effect of interleukin -3, stem cell factor and granulocyte macrophage colony stimulating factor on commited stem cells, long term bone merrow culture initiating cells and bone marrow stroma in a one- step- long term bone marrow culture.Ann Hematol. 2000: 79: 243-248
9. Ash C, Robert A, Detrick A, Esmail D: Studies of human pluripotential hemopoietic stem cells (CFUGEMM) in vitro
10. Eaves CJ, Sutter Land HJ: Regulation of primitive human hematopoietic cell in long term bone marrow culture.Seminnars in Hematology. 1991; 28
11. Beradi AC, Wany A, Levine JD, Lopes P, Scadden DT: Functional isolation and charactrization of human hemopoietic stem cell. Blood. 1994; 83: 1515
12. Stephen J: Legrue, Rodency Turner, Norman Weisbrodt: Dose the binding of cyclosporin A to Calmodulin result in immuno suppression. Sience. 1986; 234: 68-71
13. Jhansen L, Houck D, Hoffman R: Primitive human hematopoietic progenitor cells express for grunolocytemacrophage colony stimulating factor. Eperimental Hematology. 1999; 27: 762-772
14. Raghavachar A, Frickhofen A: Hematopoietic colony formation after allogenic bone marrow transplantation:Enhancement by cyclosporin A and anti-gama-(immune) interferon antiserum in vitro EXP. Hematol. 1986; 14: 621-625
15. Anasetti Beatty C: Effect of HLA in compatibility on graft versus host disease, relapse and survival after marrow- transplantation for pation with leukemia or lymphoma. Hum. Immuno. 1990;
29:79
16. Palacios R, Moller G: Cyclosporin A block receptor for HLA-DR antigen on T-Cells. Nature. 1981; 290: 246250

[^0]: 1. Fetal Bouvin Serum
