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Abstract
Objective: This study aimed to identify several potentially key genes associated with the pathogenesis of Takayasu’s 
arteritis (TA). This identification may lead to a deeper mechanistic understanding of TA etiology and pave the way for 
potential therapeutic approaches. 
Materials and Methods: In this experimental study, the microarray dataset GSE33910, which includes expression 
data for peripheral blood mononuclear cell (PBMC) samples isolated from TA patients and normal volunteers, was 
downloaded from the publicly accessible Gene Expression Omnibus (GEO) database. Differentially expressed genes 
(DEGs) were identified in PBMCs of TA patients compared with normal controls. Gene ontology (GO) enrichment 
analysis of DEGs and analysis of protein-protein interaction (PPI) network were carried out. Several hub proteins were 
extracted from the PPI network based on node degrees and random walk algorithm. Additionally, transcription factors 
(TFs) were predicted and the corresponding regulatory network was constructed.
Results: A total of 932 DEGs (372 up- and 560 down-regulated genes) were identified in PBMCs from TA patients. 
Interestingly, up-regulated and down-regulated genes were involved in different GO terms and pathways. A PPI network 
of proteins encoded by DEGs was constructed and RHOA, FOS, EGR1, and GNB1 were considered to be hub proteins 
with both higher random walk score and node degree. A total of 13 TFs were predicted to be differentially expressed. A 
total of 49 DEGs had been reported to be associated with TA in the Comparative Toxicogenomics Database (CTD). The 
only TA marker gene in the CTD database was NOS2, confirmed by three studies. However, NOS2 was not significantly 
altered in the analyzed microarray dataset. Nevertheless, NOS3 was a significantly down-regulated gene and was 
involved in the platelet activation pathway.
Conclusion: RHOA, FOS, and EGR1 are potential candidate genes for the diagnosis and therapy of TA. 
 
Keywords: Candidate Gene, Peripheral Blood Mononuclear Cell, Protein-Protein Interaction Network, Takayasu’s Arteritis     
Cell Journal(Yakhteh), Vol 19, No 4, Jan-Mar (Winter) 2018, Pages: 647-653

Citation: Huang R, He Y, Sun B, Liu B. Bioinformatic analysis Identifies three potentially key differentially expressed genes in peripheral blood mononuclear 
cells of patients with takayasu’s arteritis. Cell J. 2018; 19(4): 647-653. doi: 10.22074/cellj.2018.4991.

Introduction

Takayasu’s arteritis (TA), also known as aortoarteritis and 
pulseless disease, is a rare chronic large vessel vasculitis of 
unknown etiology, affecting large arteries, especially the 
aorta and its main branches and the pulmonary artery (1). 
TA can lead to progressive occlusion, stenosis or aneurismal 
transformation (2). It usually affects young women under 
40 years of age and is associated with important morbidity 
and mortality, particularly if there is a diagnostic delay 
(3). Therefore, gaining more insight into the underlying 
mechanism of TA is of great significance. 

Clinically, TA includes an early phase with nonspecific 
systemic signs and symptoms of fever, arthralgia, night 
sweats, headaches, weight loss and myalgia (4).  As vessel 
inflammation progresses, clinical features of this disease 
become apparent due to wall thickening, fibrosis, stenosis 
and thrombus formation (5). Tripathy et al. (6) investigated 
the expression of different cytokines at the transcript level 
in peripheral blood mononuclear cells (PBMCs) of patients 
with TA and demonstrated an inflammatory cytokine 
signature in TA with key roles suggested for tumor necrosis 
factor (TNF)-α, interleukin (IL)-4, and IL-10 in different 

pathological processes of this disorder. In addition, Soto 
et al. (7) identified the presence of IS6110 and HupB gene 
sequences associated with Mycobacterium tuberculosis in 
aortic tissues of TA patients. Recently, a study identified a 
novel susceptibility locus in the IL12B region for TA which 
could be potentially used as a genetic marker for the severity 
of this disease (8). However, data on genes associated with TA 
are very limited. The identification of key genes associated 
with this disorder may provide insight into the pathogenesis 
underlying TA and provide novel avenues for therapeutic 
intervention in TA.

Okuzaki et al. (9) used high-density oligonucleotide 
microarrays to identify genes expressed in PBMCs of TA 
patients regardless of symptoms and demonstrated that 
Ficolin 1 (FCN1) expression was elevated in peripheral 
blood samples of TA patients. In this study, we downloaded 
and reanalyzed this microarray dataset and differentially 
expressed genes (DEGs) were identified in PBMCs of TA 
patients compared with normal controls. Gene ontology 
(GO) enrichment analysis of DEGs and analysis of their 
interactions in the protein-protein interaction (PPI) network 
were carried out. Several hub proteins were extracted from 
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the PPI network based on node degree and random walk 
algorithm. Additionally, transcription factors (TFs) were 
predicted and the regulatory network was constructed. We 
sought to identify several potentially key genes associated 
with the pathogenesis of TA, which may lead to a deeper 
mechanistic understanding of TA and potential therapeutic 
approaches.

Materials and Methods
In this experimental study, the gene expression 

dataset GSE33910 deposited by Okuzaki et al. (9) 
was downloaded from the publicly accessible Gene 
Expression Omnibus (GEO) database (http://www.ncbi.
nlm.nih.gov/geo/) (10). Expression data were generated 
on a GPL4133 Agilent-014850 Whole Human Genome 
Microarray 4x44K G4112F. A total of 8 two-color arrays 
were included and each individual array comprised a 
target sample (Cy5-labeled) and a control sample (Cy3-
labeled). The target samples were derived from PBMCs 
isolated from eight TA patients who were diagnosed as TA. 
All RNA samples isolated from the PBMCs of 17 healthy 
normal volunteers were included as control samples.

 Data preprocessing and screening of differentially
expressed genes

The raw data in TXT format were downloaded. The 
two-color array data was preprocessed by using the 
Bioconductor limma package (11), including background 
correction, normalization and expression value calculation 
(12). Subsequently, by using the limma package (11), we 
identified DEGs between TA samples and control samples. 
The P values of an unpaired Student’s t test (13) with the 
matrix of gene expression values as the response variable 
was used to evaluate significance of differential expression. 
The Benjamini-corrected false discovery rate (FDR) (14) 
was applied to correct the raw P values for multiple testing. 
To get a reliable list of significant DEGs, the results were 
concurrently filtered using a cutoff of |log2FC (fold change)| 
and FDR-corrected P values. The selection of a specific 
threshold in this study was based on the usefulness of the data 
at hand and the results obtained for the follow-up analyses. 
Thus, cutoff points for up- and down-regulated genes in this 
study were |log2FC| ≥1.5 and FDR<0.05.

Functional and pathway enrichment analysis
To interpret biological function of the DEGs, we performed 

an enrichment analysis in terms of GO and the Kyoto 
encyclopedia of genes and genomes (KEGG) pathways. GO 
term and KEGG pathway analyses were carried out with the 
web-based tool DAVID bioinformatics resources (version 
6.8) (15). The selection of a cut-off criterion for GO and 
pathway enrichment analysis was based on the number of 
observed GO terms or pathways. In this study, P<0.05 (by 
hypergeometric test) were used as an empirical threshold for 
retrieving altered pathways or GO terms with gene count ≥2.

 Construction of protein-protein interaction network
and extraction of significant nodes

The STRING database (http://string-db.org) provides a 
critical integration of PPIs, including known and predicted 

interactions. The interaction evidence could be examined by 
adjusting the interaction confidence scores, which is a key feature 
of STRING (16). Furthermore, each interaction in the STRING 
database is annotated with benchmarked confidence scores (low 
confidence: scores <0.4, medium: 0.4 to 0.7, high: >0.7) (17). 
In this study, a PPI network of proteins encoded by DEGs was 
constructed using the STRING database. The PPI score was set 
at 0.7 (high confidence). Additionally, network visualization 
was performed with the Cytoscape software (18). Nodes in the 
PPI network represented proteins and the interaction between 
any two nodes is represented by an edge. The random walk 
algorithm on the network is an iterative walker’s transition 
from a given seed node (protein) to a randomly selected 
neighbor based on the structure of the network (19). In each 
step, the walk has a probability of returning to the initial nodes. 
Finally, each node (protein) in the random walk process can 
be assigned with a transition probability which is proportional 
to the frequency of the interactions between the seed proteins 
and other proteins (19, 20). Genes with higher random walk 
score were considered to be significant nodes in the network. 
In this study, we employed a random walk algorithm for 
the genes in the PPI network to prioritize significant genes 
using the R package RWOAG (https://r-forge.r-project.org/
R/?group_id=1126) (19). Additionally, significant genes were 
also identified by degree centrality.

 Transcription factor prediction and construction of
the regulatory network

iRegulon, a Cytoscape plugin, implements a genome-wide 
ranking-and-recovery approach and relies on the analysis 
of the regulatory sequences flanking each gene to detect 
enriched TF motifs and their optimal direct target subsets 
(21). We therefore used the iRegulon plugin (21) to identify 
TFs potentially regulating the DEGs and those of which were 
differentially expressed. The parameters were set at minimum 
identity between orthologous genes: 0.05 and maximum 
FDR on motif similarity: 0.001. The normalized enrichment 
score (NES)>3 was considered as a cut-off for the selection 
of the predicted TFs and their targets. The threshold value for 
differentially expressed TFs was |log2FC|≥0.5 and P<0.05, 
which is less stringent than that for DEG screening.

Takayasu’s arteritis-associated gene prediction
The comparative toxicogenomics database (CTD, http://

ctdbase.org/) is a public resource that provides information 
on connections between environmental chemicals or drugs 
and gene products, and their relationships to different 
disorders (22). This databased was used to identify DEGs that 
have been reported to be associated with TA in the literature.

Results
 Differentially expressed genes identification and
functional enrichment analysis

The expression profile of TA pathogenesis was explored by 
identifying DEGs in PBMC samples of TA patients compared 
with normal controls. Of the total of 19, 215 genes analyzed 
on the microarray, 932 genes were differentially expressed of 
which 372 were up-regulated and 560 were down-regulated. 
To investigate which cellular functions were affected by 
these DEGs, GO terms and pathway enrichment analysis 
was conducted. The top five over-represented GO terms 
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under three cellular categories [biological process (BP), 
cellular component (CC), and molecular function (MF)] 
and the main enriched pathways are shown in Table 1. 

Interestingly, we found that the up-regulated genes and 
the down-regulated genes were involved in different GO 
terms and pathways.

Table 1: Significant pathways and top five GO terms enriched by DEGs

Expression change Category Term Count P value

Up BP GO:0010467~gene expression 40 1.23E-05
GO:0060968~regulation of gene silencing 5 4.30E-05
GO:0007596~blood coagulation 23 2.99E-04
GO:0038061~NIK/NF-kappaB signaling 8 3.33E-04
GO:0006521~regulation of cellular amino acid metabolic process 7 4.66E-04

CC GO:0070062~extracellular exosome 105 3.38E-12
GO:0005829~cytosol 97 3.81E-06
GO:0005654~nucleoplasm 76 1.16E-04
GO:0005839~proteasome core complex 5 4.22E-04
GO:0000502~proteasome complex 7 9.47E-04

MF GO:0005515~protein binding 206 7.95E-05
GO:0004298~threonine-type endopeptidase activity 5 6.73E-04
GO:0044822~poly(A) RNA binding 35 7.68E-03
GO:0005102~receptor binding 14 1.98E-02
GO:0003924~GTPase activity 10 3.03E-02

PATHWAY hsa03050:Proteasome 7 4.85E-04
hsa05133:Pertussis 7 7.67E-03
hsa05034:Alcoholism 10 2.17E-02
hsa00760:Nicotinate and nicotinamide metabolism 4 2.89E-02
hsa00240:Pyrimidine metabolism 7 3.49E-02
hsa05322:Systemic lupus erythematosus 8 3.60E-02

Down BP GO:0006415~translational termination 11 4.15E-05
GO:0016259~selenocysteine metabolic process 11 5.60E-05
GO:0001887~selenium compound metabolic process 12 1.01E-04
GO:0006414~translational elongation 11 1.29E-04

 GO:0006614~SRP-dependent cotranslational protein targeting to
membrane

11 2.89E-04

CC GO:0001533~cornified envelope 7 8.47E-04
GO:0030141~secretory granule 8 2.37E-03
GO:0022627~cytosolic small ribosomal subunit 6 3.11E-03
GO:0022625~cytosolic large ribosomal subunit 6 1.45E-02
GO:0005615~extracellular space 42 4.72E-02

MF GO:0003735~structural constituent of ribosome 13 3.94E-03
GO:0043565~sequence-specific DNA binding 18 1.37E-02
GO:0005179~hormone activity 7 2.39E-02
GO:0005198~structural molecule activity 11 3.34E-02
GO:0005201~extracellular matrix structural constituent 5 3.50E-02

PATHWAY hsa03010:Ribosome 13 6.69E-05
hsa04080:Neuroactive ligand-receptor interaction 14 1.32E-02
hsa04721:Synaptic vesicle cycle 6 1.59E-02
hsa04724:Glutamatergic synapse 8 1.76E-02
hsa04010:MAPK signaling pathway 12 3.66E-02

Go; Gene ontology, DEGs; Differentially expressed genes, BP; Biological process, CC; Cellular component, and MF; Molecular function. P values were 
calculated by the hypergeometric test.
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 Protein-protein interaction network construction and
prediction of significant genes

The PPI network consisted of 627 interactions (edges) 
among 330 proteins (nodes) (Fig.1). The top 15 DEGs 
in the network ranked by the random walk score and top 
DEGs ranked by degree are shown (Table 2). The top 
four genes in the network based on random walk score 
and node degree were Ras homolog family member 
A (RHOA, up-regulated), FBJ murine osteosarcoma 
viral oncogene homolog (FOS, up-regulated), early 
growth response 1 (EGR1, down-regulated), and G 
protein subunit beta 1 (GNB1, up-regulated). On the 
other hand, nitric oxide synthase 3 (NOS3, down-
regulated) ranked 6 based on the random walk score, 

while the node degree of NOS3 was 11. Besides, a 
number of RPL family members were with a higher 
node degree but were not in the top 15 nodes ranked 
by the random walk score. These results suggested 
that there was little difference in the list of significant 
genes in the PPI network identified by the random 
walk algorithm with that based on node degree. In 
addition, we performed pathway enrichment analysis 
on the top 15 DEGs. The results showed that these 
DEGs were predominantly involved in 4 pathways, 
namely hsa05133:pertussis, hsa04921:oxytocin 
signaling pathway, hsa04611:platelet activation, and 
hsa04062:chemokine signaling pathway. Interestingly, 
RHOA, NOS3, and LYN Proto-Oncogene, Src Family 
Tyrosine Kinase (LYN) were involved in platelet 
activation, a TA-associated pathway.

Table 2: The top 15 DEGs ranked by the random walk score and their degree

Node Random walk score Node Degree

RHOA 0.0084665 GNB1 27

FOS 0.0078574 FOS 26

EGR1 0.0074923 RHOA 23

GNB1 0.0062084 EGR1 19

NOS3 0.00601 RPL38, RPS9, RPS29 15

UQCRC1 0.0058351 RPS12, FPR2, RPL32, RPL19 14

MYOD1 0.0054857 HSPB1, MRPL24, RPL35A, RPS21 13

HSPB1 0.0052129 OXT, RPS4Y2, RPS4Y1, RPLP2, RPL36A 12

NOTCH1 0.0048462 NOS3, SNRPD2, F2RL1, EIF3I 11

LYN 0.0047398 MYOD1, NOTCH1, GHSR 10

IRF1 0.004669 RAP1A, SRSF2, PRPF6, CCR5, XCR1, HCRT 9

ITGAM 0.0044762  UQCRC1, LYN, ITGAM, NUP153, PSMD6, PSMA7, CMPK1, CSTF1,
FUS, SF3A2, U2AF2, TACR2, KISS1R

8

EPRS 0.004437  IRF1, EPRS, UBE2I, CD4, CSK, NOP58, PSMB3, DDX23, GALR3,
GRM2, C3AR1, NPBWR1, OPRD1

7

STX4 0.0042952  H2AFZ, YARS, TIAM1, IL1B, LMNB1, NOC4L, PDE6D, TUFM, ENTPD1,
MMP14, PSMB6

6

OXT 0.0042259  FURIN, CCT3, HIST1H3A, TIMP1, B3GNT7, HIST1H2AC, HIST1H2AD,
 H2AFB2, CD79A, NGF, MRPL17, GALNT1, MUC3A, MUC6,
 C1GALT1C1, NT5C, NT5M, OASL, ISG15, EGR3, ITPA, PSMB8,
OR4C46, OR8D1, OR2C1, OR6Y1, OR10H2, NLE1, PSME4, CD3G

5
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Fig.1: Visual representation of the protein-protein interaction (PPI) 
network. The white nodes represent up-regulated genes and the gray 
nodes indicate down-regulated genes. The size of the nodes was positively 
correlated with node degree. 

 Transcriptional regulation network analysis and
prediction of Takayasu’s arteritis-associated genes

A total of 13 TFs were predicted to be differentially 
expressed (Table 3), such as the YY1 Transcription Factor 
(YY1) and the Fli-1 Proto-Oncogene, ETS Transcription 
Factor (FLI1). The transcriptional regulatory network 
was constructed (Fig.2). Based on the CTD database, 
a total of 893 genes had curated or inferred association 
with TA of which 49 were identified to be DEGs in this 
study (Table 4). The only TA marker gene in the CTD 
database was NOS2, confirmed by three studies (23-
25). However, NOS2 was not significantly altered in the 
analyzed microarray dataset. Nevertheless, NOS3 was a 
significantly down-regulated gene and was also a hub in 
the PPI network.

Table 3: Expression profile of predicted TFs

TF Log FC P value adj.P.val
POU2F2 1.322403 2.06E-02 0.081647

ETS2 1.322031 2.15E-02 0.078272

YY1 1.264822 1.11E-03 0.019872

FLI1 1.22772 4.01E-03 0.034229

TOX2 1.062465 1.08E-03 0.021665

E2F2 1.052923 9.83E-03 0.04705

E2F1 0.96085 3.17E-03 0.031772

KLF13 0.71519 3.47E-02 0.108853

ETS1 0.563542 2.51E-02 0.072435

POU3F3 -0.96573 1.39E-02 0.063961

POU2AF1 -0.96704 9.49E-03 0.051347

ELF5 -1.0965 1.42E-02 0.05923

PAX4 -2.0087 3.69E-02 0.101316

TF; Transcription factor.

Fig.2: Visual representation of the transcriptional regulatory network. The 
white nodes represent up-regulated genes and the gray nodes indicate 
down-regulated genes. Triangular nodes indicate  transcription  factors 
(TFs) and round nodes denote target genes.

Table 4: DEGs associated with TA in the CTD database

 Expression
change

TA gene

Up  DNPH1, ILVBL, CRAT, TNFSF13, ARAP2,
 PGD, IMPA2, TIMM10B, PSMB9, PSMB8,
 DCTPP1, PSMB3, SRXN1, OAT, GBA,
 CSK, RCHY1, LYN, SRSF2, IRAK1, AUP1,
 TMEM60, LSM10, PSMB6, COASY, PRKAB1,
HAL, KYAT1, GADD45A, NEU1, RCSD1

Down  C3AR1, PVT1, EXOSC4, CPNE1, EXOC3L2,
 HSPH1, ABHD4, HSPB1, RPS9, LENG8,
 SERPINA6, PKLR, MYOD1, IL1B, REEP6,
THEM5, MECR, RAB30

TA; Takayasu’s arteritis and CTD; Comparative toxicogenomics database.

Discussion
In the present study, by integrating the expression 

profile of TA patients, we identified three potentially key 
genes in TA, namely RHOA, FOS, and EGR1. RHOA 
encodes a member of the Rho family of small GTPases 
and functions as a molecular switch in signal transduction 
cascades (26). Ample evidence has demonstrated that 
RHOA is required for transendothelial migration, a tightly 
regulated process whereby leukocytes migrate from 
the vasculature into tissues (27-29). Transendothelial 
migration of leukocytes to the sites of inflammation is a 
critical step in the inflammatory response (29). Moreover, 
TA is a chronic disease characterized by inflammation of 
large vessels (30). In this study, RHOA was not only a hub 
protein in the PPI network, but it also was upregulated. 
These results suggest that RHOA may play a key role in 
the pathogenesis of TA. Experimental validation will be 
needed to confirm this finding.

FOS was also found to be a hub in the PPI network of 
DEGs. FOS encodes a leucine zipper protein which can 
dimerize with proteins of the JUN family, thereby forming 
the transcription factor complex AP-1 (31). AP-1 can in 
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turn be phosphorylated and regulated by mitogen-activated 
protein kinases (MAPKs) in response to Toll-like receptor 
(TLR) signaling stimuli (32). Additionally, a study has 
shown that TLR ligands can function as instigators of 
vessel wall inflammation in giant cell arteritis, another 
type of large vessel vasculitis (33). Overall, our results 
are consistent with the accumulating evidence implicating 
FOS in the pathogenesis of TA through the TLR signaling 
pathway. 

The third hub based on both higher random walk score 
and node degree was EGR1. The protein encoded by 
EGR1 belongs to the EGR family of C2H2-type zinc-
finger proteins. It is a nuclear protein and functions 
as a transcriptional regulator (36). Decker et al. (35) 
showed that EGR-1 could regulate IL-2 transcription 
by a synergistic interaction with the nuclear factor 
of activated T cells. In addition, Tripathy et al. (36) 
demonstrated that high TNF-α and low IL-2-producing T 
cells played an important role in TA. This is consistent 
with the observation of EGR-1 being a down-regulated 
hub. Thus, we suggest that down-regulation of EGR-1 in 
PBMCs of TA patients may be pathogenically significant. 
However, further investigations are needed to validate 
this association. 

We conclude that the several putative genes identified 
here, in particular RHOA, FOS and EGR1, may play 
key roles in the pathogenesis of TA and could become 
potential targets for future therapeutic strategies. The 
limitation of this analysis was the small sample size in 
this study and lack of experimental validation. Further 
studies with larger sample size concerning these genes 
may confirm the hitherto unknown mechanism underlying 
the pathogenesis of TA. This in turn may expand the 
therapeutic arsenal against TA.
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