Review on Kidney-Liver Crosstalk: Pathophysiology of Their Disorders

Document Type : Review Article

Authors

1 Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran

2 Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

3 World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia

4 Institute for Regenerative Medicine, Sechenov University, Moscow, Russia

5 Chemistry Department, Lomonosov Moscow State University, Moscow, Russia

6 Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran

7 Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden

Abstract

Kidney-liver crosstalk plays a crucial role in normal and certain pathological conditions. In pathologic states, both
renal-induced liver damage and liver-induced kidney diseases may happen through these kidney-liver interactions.
This bidirectional crosstalk takes place through the systemic conditions that mutually influence both the liver and
kidneys. Ischemia and reperfusion, cytokine release and pro-inflammatory signaling pathways, metabolic acidosis,
oxidative stress, and altered enzyme activity and metabolic pathways establish the base of this interaction between
the kidneys and liver. In these concomitant kidney-liver diseases, the survival rates strongly correlate with early
intervention and treatment of organ dysfunction. Proper care of a nephrologist and hepatologist and the identification
of pathological conditions using biomarkers at early stages are necessary to prevent the complications induced by this
complex and potentially vicious cycle. Therefore, understanding the characteristics of this crosstalk is essential for
better management. In this review, we discussed the available literature concerning the detrimental effects of kidney
failure on liver functions and liver-induced kidney diseases.

Keywords

Main Subjects


  1. Khoshdel Rad N, Aghdami N, Moghadasali R. Cellular and molecular mechanisms of kidney development: from the embryo to the kidney organoid. Front Cell Dev Biol. 2020; 8: 183.
  2. Zahmatkesh E, Ghanian MH, Zarkesh I, Farzaneh Z, Halvaei M, Heydari Z, et al. Tissue-specific microparticles improve organoid microenvironment for efficient maturation of pluripotent stem-cellderived hepatocytes. Cells. 2021; 10(6): 1274.
  3. Lane K, Dixon JJ, MacPhee IA, Philips BJ. Renohepatic crosstalk: does acute kidney injury cause liver dysfunction? Nephrol Dial Transplant. 2013; 28(7): 1634-1647.
  4. Eknoyan G, Epstein M. Hepatorenal syndrome: a historical appraisal of its origins and conceptual evolution. Kidney Int. 2021; 99(6): 1321-1330.
  5. Bonavia A, Stiles N. Renohepatic crosstalk: a review of the effects of acute kidney injury on the liver. Nephrol Dial Transplant. 2022; 37(7): 1218-1228.
  6. Muciño-Bermejo MJ. Mechanisms of kidney dysfunction in the cirrhotic patient: Non-hepatorenal acute-on-chronic kidney damage considerations. Ann Hepatol. 2020; 19(2): 145-152.
  7. Kamimura H, Setsu T, Kimura N, Yokoo T, Sakamaki A, Kamimura K, et al. Renal impairment in chronic hepatitis B: a review. Diseases. 2018; 6(2): 52.
  8. Capalbo O, Giuliani S, Ferrero-Fernández A, Casciato P, Musso CG. Kidney-liver pathophysiological crosstalk: its characteristics and importance. Int Urol Nephrol. 2019; 51(12): 2203-2207.
  9. Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015; 41(8): 1411-1423.
  10. Andreucci M, Faga T, Pisani A, Perticone M, Michael A. The ischemic/ nephrotoxic acute kidney injury and the use of renal biomarkers in clinical practice. Eur J Intern Med. 2017; 39: 1-8.
  11. Mohamadi Yarijani Z, Godini A, Madani SH, Najafi H. Reduction of cisplatin-induced renal and hepatic side effects in rat through antioxidative and anti-inflammatory properties of Malva sylvestris L. extract. Biomed Pharmacother. 2018; 106: 1767-1774.
  12. Au-Yeung KKW, Shang Y, Wijerathne CUB, Hewage SM, Siow YL, Karmin O. Acute kidney injury induces oxidative stress and hepatic lipid accumulation through AMPK signaling pathway. Antioxidants. 2023; 12(4): 883.
  13. Park SW, Chen SW, Kim M, Brown KM, Kolls JK, D’Agati VD, et al. Cytokines induce small intestine and liver injury after renal ischemia or nephrectomy. Lab Invest. 2011; 91(1): 63-84.
  14. Pascussi JM, Gerbal-Chaloin S, Pichard-Garcia L, Daujat M, Fabre JM, Maurel P, et al. Interleukin-6 negatively regulates the expression of pregnane X receptor and constitutively activated receptor in primary human hepatocytes. Biochem Biophys Res Commun. 2000; 274(3): 707-713.
  15. Stenvinkel P, Ketteler M, Johnson RJ, Lindholm B, Pecoits-Filho R, Riella M, et al. IL-10, IL-6, and TNF-alpha: central factors in the altered cytokine network of uremia--the good, the bad, and the ugly. Kidney Int. 2005; 67(4): 1216-1233.
  16. Golab F, Kadkhodaee M, Zahmatkesh M, Hedayati M, Arab H, Schuster R, et al. Ischemic and non-ischemic acute kidney injury cause hepatic damage. Kidney Int. 2009; 75(8): 783-792.
  17. Khastar H, Kadkhodaee M, Sadeghipour HR, Seifi B, Hadjati J, Najafi A, et al. Liver oxidative stress after renal ischemia-reperfusion injury is leukocyte dependent in inbred mice. Iran J Basic Med Sci. 2011; 14(6): 534-549.
  18. Elshazly S, Soliman E. PPAR gamma agonist, pioglitazone, rescues liver damage induced by renal ischemia/reperfusion injury. Toxicol Appl Pharmacol. 2019; 362: 86-94.
  19. Fadillioglu E, Kurcer Z, Parlakpinar H, Iraz M, Gursul C. Melatonin treatment against remote organ injury induced by renal ischemia reperfusion injury in diabetes mellitus. Arch Pharm Res. 2008; 31(6): 705-712.
  20. Khastar H. Protective effects of vitamin E against liver damage caused by renal ischemia reperfusion. Ren Fail. 2015; 37(3): 494- 496.
  21. Najafi H, Mohamadi Yarijani Z, Changizi-Ashtiyani S, Mansouri K, Modarresi M, Madani SH, et al. Protective effect of Malva sylvestris L. extract in ischemia-reperfusion induced acute kidney and remote liver injury. PLoS One. 2017; 12(11): e0188270.
  22. Vijayakumar RS, Surya D, Nalini N. Antioxidant efficacy of black pepper (Piper nigrum L.) and piperine in rats with high fat diet induced oxidative stress. Redox Rep. 2004; 9(2): 105-110.
  23. Vukelić D, Djordjevic AB, Anđelković M, Antonijević Miljaković E, Baralić K, Živančević K, et al. Subacute exposure to low Pb doses promotes oxidative stress in the kidneys and copper disturbances in the liver of male rats. Toxics. 2023; 11(3): 256.
  24. Gerich JE, Meyer C, Woerle HJ, Stumvoll M. Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care. 2001; 24(2): 382-391.
  25. Anno T, Kaneto H, Shigemoto R, Kawasaki F, Kawai Y, Urata N, et al. Hypoinsulinemic hypoglycemia triggered by liver injury in elderly subjects with low body weight: case reports. Endocrinol Diabetes Metab Case Rep. 2018; 2018: 17-0155.
  26. Arem R. Hypoglycemia associated with renal failure. Endocrinol Metab Clin North Am. 1989; 18(1): 103-121.
  27. Freire Jorge P, Wieringa N, de Felice E, van der Horst ICC, Oude Lansink A, Nijsten MW. The association of early combined lactate and glucose levels with subsequent renal and liver dysfunction and hospital mortality in critically ill patients. Crit Care. 2017; 21(1): 218.
  28. Legouis D, Ricksten SE, Faivre A, Verissimo T, Gariani K, Verney C, et al. Altered proximal tubular cell glucose metabolism during acute kidney injury is associated with mortality. Nat Metab. 2020; 2(8): 732-743.
  29. Zager RA, Johnson AC, Becker K. Renal cortical pyruvate depletion during AKI. J Am Soc Nephrol. 2014; 25(5): 998-1012. 30. Khoshdel-Rad N, Zahmatkesh E, Shpichka A, Timashev P, Vosough M. Outbreak of chronic renal failure: will this be a delayed heritage of COVID-19? J Nephrol. 2021; 34(1): 3-5.
  30. Jansen K, Schuurmans CCL, Jansen J, Masereeuw R, Vermonden T. Hydrogel-based cell therapies for kidney regeneration: current trends in biofabrication and in vivo repair. Curr Pharm Des. 2017; 23(26):3845-3857.
  31. Yeung CK, Shen DD, Thummel KE, Himmelfarb J. Effects of chronic kidney disease and uremia on hepatic drug metabolism and transport. Kidney Int. 2014; 85(3): 522-528.
  32. Guengerich FP. Cytochrome p450 and chemical toxicology. Chem Res Toxicol. 2008; 21(1): 70-83.
  33. Jain N, Hedayati SS, Sarode R, Banerjee S, Reilly RF. Antiplatelet therapy in the management of cardiovascular disease in patients with CKD: what is the evidence? Clin J Am Soc Nephrol. 2013; 8(4): 665-674.
  34. Jain N, Li X, Adams-Huet B, Sarode R, Toto RD, Banerjee S, et al. Differences in whole blood platelet aggregation at baseline and in response to aspirin and aspirin plus clopidogrel in patients with versus without chronic kidney disease. Am J Cardiol. 2016; 117(4): 656-663.
  35. Wong J, Piceno YM, DeSantis TZ, Pahl M, Andersen GL, Vaziri ND. Expansion of urease- and uricase-containing, indole- and pcresol- forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am J Nephrol. 2014; 39(3): 230-237.
  36. Fujita K, Matsumoto N, Ishida H, Kubota Y, Iwai S, Shibanuma M, et al. Decreased disposition of anticancer drugs predominantly eliminated via the liver in patients with renal failure. Curr Drug Metab. 2019; 20(5): 361-376.
  37. Huang ZH, Murakami T, Okochi A, Yumoto R, Nagai J, Takano M. Expression and function of P-glycoprotein in rats with glycerol-induced acute renal failure. Eur J Pharmacol. 2000; 406(3): 453-460.
  38. Awad AS, Kamel R, Sherief MA. Effect of thymoquinone on hepatorenal dysfunction and alteration of CYP3A1 and spermidine/ spermine N-1-acetyl-transferase gene expression induced by renal ischaemia-reperfusion in rats. J Pharm Pharmacol. 2011; 63(8): 1037-1042.
  39. Choi YH, Lee YS, Kim TK, Lee BY, Lee MG. Faster clearance of mirodenafil in rats with acute renal failure induced by uranyl nitrate: contribution of increased protein expression of hepatic CYP3A1 and intestinal CYP1A1 and 3A1/2. J Pharm Pharmacol. 2009; 61(10): 1325-1332.
  40. Kirwan CJ, MacPhee IA, Lee T, Holt DW, Philips BJ. Acute kidney injury reduces the hepatic metabolism of midazolam in critically ill patients. Intensive Care Med. 2012; 38(1): 76-84.
  41. Hoste EAJ, De Corte W. Clinical consequences of acute kidney injury. Contrib Nephrol. 2011; 174: 56-64.
  42. Brosnan JT. Interorgan amino acid transport and its regulation. J Nutr. 2003; 133(6 Suppl 1): 2068S-2072S.
  43. Ballmer PE, McNurlan MA, Hulter HN, Anderson SE, Garlick PJ, Krapf R. Chronic metabolic acidosis decreases albumin synthesisand induces negative nitrogen balance in humans. J Clin Invest. 1995; 95(1): 39-45.
  44. Holecek M, Safránek R, Rysavá R, Kadlcíková J, Sprongl L. Acute effects of acidosis on protein and amino acid metabolism in perfused rat liver. Int J Exp Pathol. 2003; 84(4): 185-190.
  45. Wiegand J, Berg T. The etiology, diagnosis and prevention of liver cirrhosis: part 1 of a series on liver cirrhosis. Dtsch Arztebl Int. 2013; 110(6): 85-91.
  46. Scorza M, Elce A, Zarrilli F, Liguori R, Amato F, Castaldo G. Genetic diseases that predispose to early liver cirrhosis. Int J Hepatol. 2014; 2014: 713754.
  47. Erly B, Carey WD, Kapoor B, McKinney JM, Tam M, Wang W. Hepatorenal syndrome: a review of pathophysiology and current treatment options. Semin Intervent Radiol. 2015; 32(4): 445-454.
  48. Schulz M, Diehl V, Trebicka J, Wygrecka M, Schaefer L. Biglycan: a regulator of hepatorenal inflammation and autophagy. Matrix Biol. 2021; 100-101: 150-161.
  49. Kazory A, Ronco C. Hepatorenal syndrome or hepatocardiorenal syndrome: revisiting basic concepts in view of emerging data. Cardiorenal Med. 2019; 9(1): 1-7.
  50. Carvalho MVH, Kroll PC, Kroll RTM, Carvalho VN. Cirrhotic cardiomyopathy: the liver affects the heart. Braz J Med Biol Res. 2019; 52(2): e7809.
  51. Fede G, Privitera G, Tomaselli T, Spadaro L, Purrello F. Cardiovascular dysfunction in patients with liver cirrhosis. Ann Gastroenterol. 2015; 28(1): 31-40.
  52. Krag A, Wiest R, Albillos A, Gluud LL. The window hypothesis: haemodynamic and non-haemodynamic effects of β-blockers improve survival of patients with cirrhosis during a window in the disease. Gut. 2012; 61(7): 967-969.
  53. Petrescu AD, Kain J, Liere V, Heavener T, DeMorrow S. Hypothalamus- pituitary-adrenal dysfunction in cholestatic liver disease. Front Endocrinol (Lausanne). 2018; 9: 660.
  54. Risør LM, Bendtsen F, Møller S. Immunologic, hemodynamic, and adrenal incompetence in cirrhosis: impact on renal dysfunction. Hepatol Int. 2015; 9(1): 17-27.
  55. Kim G, Huh JH, Lee KJ, Kim MY, Shim KY, Baik SK. Relative adrenal insufficiency in patients with cirrhosis: a systematic review and meta-analysis. Dig Dis Sci. 2017; 62(4): 1067-1079.
  56. Graupera I, Pavel O, Hernandez-Gea V, Ardevol A, Webb S, Urgell E, et al. Relative adrenal insufficiency in severe acute variceal and non-variceal bleeding: influence on outcomes. Liver Int. 2015; 35(8): 1964-1973.
  57. Velez JCQ, Therapondos G, Juncos LA. Reappraising the spectrum of AKI and hepatorenal syndrome in patients with cirrhosis. Nat Rev Nephrol. 2020; 16(3): 137-155.
  58. Chancharoenthana W, Leelahavanichkul A. Acute kidney injury spectrum in patients with chronic liver disease: where do we stand? World J Gastroenterol. 2019; 25(28): 3684-3703.
  59. Boyer TD, Sanyal AJ, Garcia-Tsao G, Regenstein F, Rossaro L, Appenrodt B, et al. Impact of liver transplantation on the survival of patients treated for hepatorenal syndrome type 1. Liver Transpl. 2011; 17(11): 1328-1332.
  60. Musso G, Cassader M, Cohney S, Pinach S, Saba F, Gambino R. Emerging liver-kidney interactions in nonalcoholic fatty liver disease. Trends Mol Med. 2015; 21(10): 645-662.
  61. Nampoothiri RV, Duseja A, Rathi M, Agrawal S, Sachdeva N, Mehta M, et al. Renal dysfunction in patients with nonalcoholic fatty liver disease is related to the presence of diabetes mellitus and severity of liver disease. J Clin Exp Hepatol. 2019; 9(1): 22-28.
  62. Mizuiri S, Ohashi Y. ACE and ACE2 in kidney disease. World J Nephrol. 2015; 4(1): 74-82.
  63. Hirata T, Tomita K, Kawai T, Yokoyama H, Shimada A, Kikuchi M, et al. Effect of telmisartan or losartan for treatment of nonalcoholic fatty liver disease: fatty liver protection trial by telmisartan or losartan study (FANTASY). Int J Endocrinol. 2013; 2013: 587140.
  64. Rajani R, Pastor-Soler NM, Hallows KR. Role of AMP-activated protein kinase in kidney tubular transport, metabolism, and disease. Curr Opin Nephrol Hypertens. 2017; 26(5): 375-383.
  65. Chang HC, Guarente L. SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab. 2014; 25(3): 138-145.
  66. Ding RB, Bao J, Deng CX. Emerging roles of SIRT1 in fatty liver diseases. Int J Biol Sci. 2017; 13(7): 852-867.
  67. Salminen A, Kaarniranta K. SIRT1: regulation of longevity via autophagy. Cell Signal. 2009; 21(9): 1356-1360.
  68. Tran D, Bergholz J, Zhang H, He H, Wang Y, Zhang Y, et al. Insulinlike growth factor-1 regulates the SIRT1-p53 pathway in cellular senescence. Aging Cell. 2014; 13(4): 669-678.
  69. Hasegawa K, Wakino S, Simic P, Sakamaki Y, Minakuchi H, Fujimura K, et al. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat Med. 2013; 19(11): 1496-1504.
  70. Hong Q, Zhang L, Das B, Li Z, Liu B, Cai G, et al. Increased podocyte Sirtuin-1 function attenuates diabetic kidney injury. Kidney Int. 2018; 93(6): 1330-1343.
  71. Reiss AB, Voloshyna I, De Leon J, Miyawaki N, Mattana J. Cholesterol metabolism in CKD. Am J Kidney Dis. 2015; 66(6): 1071- 1082.
  72. Wang B, Shen Y, Zhai L, Xia X, Gu HM, Wang M, et al. Atherosclerosis- associated hepatic secretion of VLDL but not PCSK9 is dependent on cargo receptor protein Surf4. J Lipid Res. 2021; 62: 100091.
  73. Gyebi L, Soltani Z, Reisin E. Lipid nephrotoxicity: new concept for an old disease. Curr Hypertens Rep. 2012; 14(2): 177-181.
  74. Wang XX, Jiang T, Shen Y, Adorini L, Pruzanski M, Gonzalez FJ, et al. The farnesoid X receptor modulates renal lipid metabolism and diet-induced renal inflammation, fibrosis, and proteinuria. Am J Physiol Renal Physiol. 2009; 297(6): F1587-F1596.
  75. Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta ML, Abdelmalek MF, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015; 385(9972): 956-965.
  76. Tao X, Chen C, Huang Z, Lei Y, Wang M, Wang S, et al. Genetic deletion of phosphodiesterase 4D in the liver improves kidney damage in high-fat fed mice: liver-kidney crosstalk. Cell Death Dis. 2023; 14(4): 273.
  77. Badmus OO, Hillhouse SA, Anderson CD, Hinds TD, Stec DE. Molecular mechanisms of metabolic associated fatty liver disease (MAFLD): functional analysis of lipid metabolism pathways. Clin Sci (Lond). 2022; 136(18): 1347-1366.
  78. Hashimoto Y, Hamaguchi M, Okamura T, Nakanishi N, Obora A, Kojima T, et al. Metabolic associated fatty liver disease is a risk factor for chronic kidney disease. J Diabetes Investig. 2022; 13(2): 308-316.
  79. Khoshdel-Rad N, Zahmatkesh E, Bikmulina P, Peshkova M, Kosheleva N, Bezrukov EA, et al. Modeling hepatotropic viral infections: cells vs. animals. Cells. 2021; 10(7): 1726.
  80. Pal RB, Saha P, Das I, Sinha MK. Fulminant hepatitis and glomerulonephritis-- a rare presentation of hepatitis A virus infection. Acta Paediatr. 2011; 100(9): e132-e134.
  81. Choi HK, Song YG, Han SH, Ku NS, Jeong SJ, Baek JH, et al. Clinical features and outcomes of acute kidney injury among patients with acute hepatitis A. J Clin Virol. 2011; 52(3): 192-197.
  82. Hong L, Zhang J, Min J, Lu J, Li F, Li H, et al. A role for MHBst167/ HBx in hepatitis B virus-induced renal tubular cell apoptosis. Nephrol Dial Transplant. 2010; 25(7): 2125-2133.
  83. Hong YS, Ryu S, Chang Y, Caínzos-Achirica M, Kwon MJ, Zhao D, et al. Hepatitis B virus infection and development of chronic kidney disease: a cohort study. BMC Nephrol. 2018; 19(1): 353.
  84. Chen YC, Su YC, Li CY, Wu CP, Lee MS. A nationwide cohort study suggests chronic hepatitis B virus infection increases the risk of end-stage renal disease among patients in Taiwan. Kidney Int. 2015; 87(5): 1030-1038.
  85. Diao Z, Ding J, Yin C, Wang L, Liu W. Purified hepatitis B virus induces human mesangial cell proliferation and extracellular matrix expression in vitro. Virol J. 2013; 10: 300.
  86. Wang X, Wang L, Zhu N, Zhou Y, Gu LJ, Yuan WJ. Hepatitis B virus X protein modulates renal tubular epithelial cell-induced T-cell and macrophage responses. Immunol Cell Biol. 2016; 94(3): 266-273.
  87. Mouthon L, Deblois P, Sauvaget F, Meyrier A, Callard P, Guillevin L. Hepatitis B virus-related polyarteritis nodosa and membranous nephropathy. Am J Nephrol. 1995; 15(3): 266-269.
  88. Lai TS, Lee MH, Yang HI, You SL, Lu SN, Wang LY, et al. Hepatitis C viral load, genotype, and increased risk of developing end-stage renal disease: REVEAL-HCV study. Hepatology. 2017; 66(3): 784- 793.
  89. Cacoub P, Desbois AC, Isnard-Bagnis C, Rocatello D, Ferri C. Hepatitis C virus infection and chronic kidney disease: Time for reappraisal. J Hepatol. 2016; 65 Suppl 1: S82-S94.
  90. Bazerbachi F, Haffar S, Garg SK, Lake JR. Extra-hepatic manifestations associated with hepatitis E virus infection: a comprehensive review of the literature. Gastroenterol Rep (Oxf). 2016; 4(1): 1-15.
  91. Scotto G, Aucella F, Grandaliano G, Martinelli D, Querques M, Gesuete A, et al. Hepatitis E in hemodialysis and kidney transplant patients in south-east Italy. World J Gastroenterol. 2015; 21(11): 3266-3273.
  92. Piano S, Romano A, Di Pascoli M, Angeli P. Why and how to measure renal function in patients with liver disease. Liver Int. 2017; 37 Suppl 1: 116-122.
  93. Philips CA, Ahamed R, Augustine P. SARS-CoV-2 related liver impairment - perception may not be the reality. J Hepatol. 2020; 73(4): 991-992.
  94. Huelin P, Solà E, Elia C, Solé C, Risso A, Moreira R, et al. Neutrophil gelatinase-associated lipocalin for assessment of acute kidney injury in cirrhosis: a prospective study. Hepatology. 2019; 70(1): 319-333.
  95. Aiello FI, Bajo M, Marti F, Musso CG. How to evaluate renal function in stable cirrhotic patients. Postgrad Med. 2017; 129(8): 866-871.
  96. Thabut D, Massard J, Gangloff A, Carbonell N, Francoz C, Nguyen- Khac E, et al. Model for end-stage liver disease score and systemic inflammatory response are major prognostic factors in patients with cirrhosis and acute functional renal failure. Hepatology. 2007; 46(6): 1872-1882.
  97. Bonavia A, Groff A, Karamchandani K, Singbartl K. Clinical utility of extracorporeal cytokine hemoadsorption therapy: a literature review. Blood Purif. 2018; 46(4): 337-349.
  98. Kim M, Park SW, Kim M, D’Agati VD, Lee HT. Isoflurane activates intestinal sphingosine kinase to protect against renal ischemia-reperfusion- induced liver and intestine injury. Anesthesiology. 2011; 114(2): 363-373.
  99. Rajekar H, Chawla Y. Terlipressin in hepatorenal syndrome: Evidence for present indications. J Gastroenterol Hepatol. 2011; 26 Suppl 1: 109-114.
  100. Nanda A, Reddy R, Safraz H, Salameh H, Singal AK. Pharmacological therapies for hepatorenal syndrome: a systematic review and meta-analysis. J Clin Gastroenterol. 2018; 52(4): 360-367.
  101. Israni AK, Xiong H, Liu J, Salkowski N, Trotter JF, Snyder JJ, et al. Predicting end-stage renal disease after liver transplant. Am J Transplant. 2013; 13(7): 1782-1792.
  102. Stine JG, Wang J, Cornella SL, Behm BW, Henry Z, Shah NL, et al. Treatment of type-1 hepatorenal syndrome with pentoxifylline: a randomized placebo controlled clinical trial. Ann Hepatol. 2018; 17(2): 300-306.
  103. Brensing KA, Textor J, Perz J, Schiedermaier P, Raab P, Strunk H, et al. Long term outcome after transjugular intrahepatic portosystemic stent-shunt in non-transplant cirrhotics with hepatorenal syndrome: a phase II study. Gut. 2000; 47(2): 288-295.
  104. Makris K, Spanou L. Acute kidney injury: diagnostic approaches and controversies. Clin Biochem Rev. 2016; 37(4): 153-175.
  105. Asrani SK, Shankar N, da Graca B, Nadim MK, Cardenas A. Role of novel kidney biomarkers in patients with cirrhosis and after liver transplantation. Liver Transpl. 2022; 28(3): 466-482.
  106. Juanola A, Graupera I, Elia C, Piano S, Solé C, Carol M, et al. Urinary L-FABP is a promising prognostic biomarker of ACLF and mortality in patients with decompensated cirrhosis. J Hepatol. 2022; 76(1): 107-114.
  107. Belcher JM, Sanyal AJ, Peixoto AJ, Perazella MA, Lim J, Thiessen- Philbrook H, et al. Kidney biomarkers and differential diagnosis of patients with cirrhosis and acute kidney injury. Hepatology. 2014; 60(2): 622-632.
  108. Singal AK, Palmer G, Melick L, Abdallah M, Kwo P. Vasoconstrictor therapy for acute kidney injury hepatorenal syndrome: a metaanalysis of randomized studies. Gastro Hep Adv. 2023; 2: 455-464.
  109. Mohamadnejad M, Vosough M, Moossavi S, Nikfam S, Mardpour S, Akhlaghpoor S, et al. Intraportal infusion of bone marrow mononuclear or CD133+ cells in patients with decompensated cirrhosis: a double-blind randomized controlled trial. Stem Cells Transl Med. 2016; 5(1): 87-94.
  110. Bonavia A, Stiles N. Renohepatic crosstalk: a review of the effects of acute kidney injury on the liver. Nephrol Dial Transplant. 2022; 37(7): 1218-1228.
  111. De Maria Marchiano R, Di Sante G, Piro G, Carbone C, Tortora G, Boldrini L, et al. Translational research in the era of precision medicine: where we are and where we will go. J Pers Med. 2021; 11(3): 216.