
          CELL JOURNAL(Yakhteh), Vol 19, No 3, Oct-Dec (Autumn) 2017 343

Original Article

Stochastic Cell Fate and Longevity of Offspring
 

Faezeh Dorri, Ph.D.1, Hamid Pezeshk, Ph.D.2, Mehdi Sadeghi, Ph.D.3, 4*

1. Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
2. School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran

3. National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
4. School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

*Corresponding Address: P.O. BOX: 14155/6343, National Institute of Genetic Engineering and Biotechnology, 
Shahrak-e Pajoohesh, Tehran-Karaj Highway, Tehran, Iran

Email: sadeghi@nigeb.ac.ir
 

Received: 9/Mar/2016, Accepted: 14/Aug/2016
Abstract
Objective: Cellular decision-making is a key process in which cells with similar genetic 
and environmental background make dissimilar decisions. This stochastic process, which 
happens in prokaryotic and eukaryotic cells including stem cells, causes cellular diver-
sity and phenotypic variation. In addition, fitness predicts and describes changes in the 
genetic composition of populations throughout the evolutionary history. Fitness may thus 
be defined as the ability to adapt and produce surviving offspring. Here, we present a 
mathematical model to predict the fitness of a cell and to address the fundamental issue of 
phenotypic variation. We study a basic decision-making scenario where a bacteriophage 
lambda reproduces in E. coli, using both the lytic and the lysogenic pathways. In the lytic 
pathway, the bacteriophage replicates itself within the host bacterium. This fast replication 
overcrowds and in turn destroys the host bacterium. In the lysogenic pathway, however, 
the bacteriophage inserts its DNA into the host genome, and is replicated simultaneously 
with the host genome.

Materials and Methods: In this prospective study, a mathematical predictive model was 
developed to estimate fitness as an index of survived offspring. We then leverage experi-
mental data to validate the predictive power of our proposed model. A mathematical model 
based on game theory was also generated to elucidate a rationale behind cell decision.      
Results: Our findings indicate that a rational decision that is aimed to maximize life expec-
tancy of offspring is almost identical to bacteriophage behavior reported based on experi-
mental data. The results also showed that stochastic decision on cell fate maximizes the 
expected number of survived offspring.                    
Conclusion: We present a mathematical framework for analyzing a basic phenotypic 
variation problem and explain how bacteriophages maximize offspring longevity based 
on this model. We also introduce a mathematical benchmark for other investigations of 
phenotypic variation that exists in eukaryotes including stem cell differentiation.          
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Introduction
Prokaryotic and eukaryotic cells make 

decisions on their cell fate stochastically under 
similar genetic and environmental conditions 
(1). A similar pattern occurs in stem cells, 
where identical cells have different fates. 
Waddington described the process of stochastic 
decision-making in stem cells by simulating 
the circumstances in which a ball rolls down 

onto a slanted landscape with a bifurcated 
valley. Although, the bi-stable gene regulatory 
network quantitatively characterizes this 
process in some single cells, however, for 
many cells a quantitative model for describing 
this process is still unavailable. Such stochastic 
cell decision-making creates cellular diversity 
and increases chance of survival in varying 
environment. Fitness, as a central idea in 
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natural selection, is the ability of an organism 
to survive and reproduce itself in a competitive 
environment (2-4). Traits or characteristics of an 
organism, i.e. phenotypes, determine the fitness 
of an organism. The interaction of genotypic 
variation and differing environments may cause 
this phenotypic variation in organisms. For 
example, trees with larger leaves, as a heritable 
phenotype, are selected in darker environments 
due to their environmental adaptation (5-
7). Nevertheless, in stochastic cell decision-
making, organisms with similar genotypes that 
are living in identical environmental conditions 
display different phenotypes. This phenotypic 
variation is considered as a risk-reducing 
strategy in many organisms dealing with 
environmental variation (8-11).

The natural selection process chooses 
organisms that fit better to the existing 
environment and it is these that survive and 
transmit their genome to the next generations 
(12, 13). In other words, fitness may be defined 
as an improvement in survival of an organism 
(14-17) or by the ability of an organism to 
produce offspring (18, 19). However, finding 
an exact mathematical model, as a quantitative 
measure, for fitness is still controversial. Lysis-
lysogeny decision in bacteriophage lambda is 
a fundamental decision-making process where 
bacteriophages with similar genotypes living 
in an identical environment make different 
decisions by gaining various phenotypes (20-
22). Bacteriophage lambda as a virus is not 
able to reproduce by itself and needs a host for 
its reproduction. After bacteriophage lambda 
infects the bacterium E. coli, a decision should 
be made between the lytic and the lysogenic 
pathways. In the lytic pathway, the bacteriophage 
rapidly replicates itself inside the host bacterium 
and breaks down the host and releases its 
content in the environment. On the other hand, 
in the lysogenic pathway, bacteriophage lambda 
inserts its genome into the E. coli genome and 
reproduces by E. coli reproduction (23-25). 
Bacteriophages try to optimize their fitness by 
having to face a trade-off between the lytic and 
the lysogenic pathways (22, 26, 27). If many 
bacteria are present in the environment, the 
lytic pathway is preferred since the released 
offspring is more likely to find a host during 
their journey. However, infecting all bacteria 

make the lytic pathway an inefficient choice 
since there would not be enough hosts for the 
released bacteriophages. Hence, a mixture of 
both lysis and lysogeny is required to optimize 
the fitness of the bacteriophages.

In our study, we aimed to investigate the 
lysis-lysogeny decision-making problem 
in bacteriophage lambda as a basic cellular 
phenotypic variation problem. In this scenario, 
bacteriophages have identical genomes and 
environment but with different decisions. We 
developed a mathematical model to describe 
a rationale in the bacteriophage decision-
making process. Our model gives an exact 
quantitative measurement of fitness for every 
possible decision. In particular, we define 
fitness as the expected number of survived 
bacteriophage offspring and propose a model 
to estimate the total number of survivors in 
the environment. Moreover, we evaluated our 
model by comparing our expectations with data 
from real world experiments and show that a 
rational decision based on our model matches 
well with the behavior of bacteriophage lambda 
reported in experimental studies.

The lysis-lysogeny decision
Previous studies have shown that there are 

a few biological factors that determine the 
decision between the two pathways which 
include number of bacteriophages inside the 
host bacterium, size of the host bacterium, 
stress, temperature and starvation (22-26, 
28). One of the most well known parameters 
is the multiplicity of infection (MOI) which 
is simply the number of bacteriophages that 
infect the same host bacterium. The lysis-
lysogeny decision leans towards the lysogenic 
pathway when a higher MOI is present (23-
25). Moreover, it has been shown that larger 
host bacteria increase the likelihood of the lytic 
pathway (22, 26). From an intracellular point of 
view, the expression level of two proteins cI and 
Cro determine the final fate of bacteriophages 
(Fig.1) where the former induces the lysogenic 
pathway and the latter induces the lytic pathway.  
In this regulatory network, dimer cI2 and protein 
cI have positive effects on each other but dimer 
cI2 also weakly inhibits cI. On the other hand, 
dimer Cro2 represses Cro but Cro activates dimer 
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Cro2. Finally, dimers cI2 and Cro2 suppress Cro 
and cI respectively, as described previously by 
Oppenheim et al. (29).

Fig.1: A simple bi-stt gene regulatory network for the lysis-
lysogeny decision.

Materials and Methods
In this prospective study, we present a mathematical 

model to describe the lysis-lysogeny decision-making 
process where a rational player is willing to optimize 
longevity of its offspring. We first propose a model to 
measure the utility of either lytic or lysogenic actions 
as functions of the number of offspring that survive in 
their environmental circumstances. We then employ 
the logit-response dynamics, which is similar to the 
Boltzmann distribution, to find the probability of 
each action in a rational move.

Poisson process
We model the infection event by the Poisson 

process with the average rate λ. The probability 
that a host bacterium, with a unit size and internal 
MOI  λ is infected by a bacteriophage is computed 
as follows:

f(host bacterium MOI=µǀ average MOI=λ)=e-λλn/µǃ
We build this model with respect to an 

environment with the average MOI λ, in which 
each host bacterium is infected by phages.

Lytic and lysogenic utilities
One decision is made per host bacterium during 

the lysis-lysogeny decision-making process. This 
means that all phages inside a host bacterium 
choose the lysis-lysogeny decision in aggregate. 
Thus, we can model all phages inside a host 

bacterium as a single decision maker. However, 
we do not claim that all phages inside a host 
bacterium behave in the same way. In specific, 
we do not study the mechanism by which phages 
inside a host bacterium reach an agreement on the 
final action, but we propose a mathematical model 
to demonstrate that the aggregated decision may 
be seen as a rational decision.

Given that a rational decision maker utilizes lysis 
and lysogeny to maximize the expected number of 
offspring, we define the utility of each action with 
the average MOI as λ in the following manner:
Lysogeny

 In the lysogenic pathway, the phage genome is 
inserted into the host bacterium genome. This 
means that one offspring will find a host bacterium 
and survive, and thus the utility of lysogeny is 1 
regardless of the average MOI.
Lysis

In the lytic pathway, the viral genome is replicated 
within the host bacterium, and the replicated offspring 
are released after killing the host bacterium. However, 
the released phages have no replication power, and 
thus start their journey for finding a new host. The 
utility of lysis is therefore the expected number 
of the released phages that find a host bacterium. 
Note that when many phages enter the same host 
bacterium, we have to divide the utility between the 
participants. In specific, when k phages have entered 
the same host bacterium, one can imagine two ways 
for dividing the utility of finding the host bacterium 
between the participants. The first method assigns 1/k 
to each participant, and the second one assigns the 
entire utility, which is 1, to the first phage that enters 
the bacterium. Since we do not know which phage 
makes the first entry, the second method assigns 1 to 
each phage with a probability of  1/k, the expected 
utility of both methods are the same. In this paper, 
we employ the second method and assign the entire 
utility to the first that enters. Assuming the phages in 
a bacterium have decided to lyse and release n free 
phages, these phages start finding an empty bacterium 
in the environment. In the following we compute the 
expected number of phages, out of those (n) phages 
that infect an empty bacterium.

Balls-into-bins problem

We model the problem of phages entering an 
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empty bacterium as a variant of balls-into-bins 
problem where we have n balls and four kinds of 
bins: k blue bins, f red bins, a black bin, and a white 
bin (Fig.2). Balls are representing phages and bins are 
representing host bacteriums. We want to compute 
the expected number of phages (balls), out of those 
(n) phages that infect an empty bacterium (blue bins). 
At each step, we randomly place a ball into one of 
these bins. In particular, the ball is thrown into the 
blue, red, black, and white bins with probabilities of 
Pcolor×k/m, Pcolor×(m-k)/m, Pblack and Pwhite such that 
Pcolor+Pblack +Pwhite=1. If the ball is placed in a non-
white bin, we move to the next step and place the 
next ball into the bins. If the ball is placed in the white 
bin, we take the ball out and place it once more. We 
repeat this process until the ball is placed in a non-
white bin and then proceed to the next ball. The goal 
in this stage is to count the expected number balls 
that has occupied blue bins. The next step is to solve 
the balls-into-bins problem.

Fig.2: The balls-into-bins problem where we have k blue bins, 
m-k red bins, one black bin, and one white bin.  We want to 
compute the expected number of balls, out of n balls that 
enters an empty bin. In each step we place a ball into one of 
the bins. The probabilities that the ball is thrown into blue, 
red, black, and the white bins are  Pcolor×k⁄m , Pcolor×(m-k)⁄m, 
Pblack, and Pwhite  respectively. If the ball is placed in the white 
bin, we pick the ball and throw it again until the ball is placed 
in a non-white bin.

Problem solving of balls-into-bins

 In this part, we propose a method to solve the 
corresponding balls-into-bins issue.
Independent

Initially, we discard any kind of correlation 
between the balls. The bins are then randomly 
occupied with balls. The probability that the ball is 
placed in one of the blue bins is Pcolor×k/m. On the 
other hand, the probability that the ball is placed 
in the white bin is Pwhite and in this situation we 
throw it again. Thus, the probability that the ball 

is placed into a blue bin, x1,k is computed by the 
following equation:

X1, k=Pcolor×k/m+Pwhite×X1, k  (2)

By rearrangement, we have:
X1, k=Pcolor×k/m×(1-Pwhite)  (3)

That is the probability of a released phage that 
infects an empty bacterium. Thus, the expected 
number of phages that infect an empty bacterium 
can be calculated as in Equation 4.

Xn, k=n× X1, k=Pcolor×n×k/m×(1-Pwhite)  (4)

Dependent

When a ball is placed into a blue bin, that bin is no longer 
empty and may not be count again. We discard this 
kind of dependency in the previous analysis. Here, we 
propose an algorithm for finding the expected number 
of occupied blue bins by considering dependencies. 
The  xn,k  is the expected number of occupied blue bins 
when we have n balls, k blue bins, and m-k red bins. 
Then, we have:

Xn, k=Pcolor×k/m×(1+Xn-1, k-1)+ Pcolor×m-k/m× Xn-1, k+ 
Pblack× Xn-1, k+Pwhite×Xn, k    (5)

Note that xn,0=x0,k=0 for all n≥0 and all k≥0, and 
one can compute xn',k' for all nˊ≤n and kˊ≤m by a 
dynamic program (Algorithm 1).

 Algorithm 1: Computing

1: for n´=0 to n do
2: xn´,0=0   
3:  end for
4: for k´=0 to m do 
5:  x0,k´=0     
6:  end for
7:  Pˊ color=Pcolor/(1-Pwhite)
8:  Pˊ black=Pblack/(1-Pwhite)
9:  for n´=1 to n do
10: for k´=1 to m do
11: xn´,k´=P´color×k´/m×(1+xn´-1,k´-1)+P´color×(m-k´)/m×xn-1,k´+P´black×xn´-1,k´   
12: end for
13: end for
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Solving the problem based on the balls-into-
bins issue

We first show that our problem is exactly the above 
variant of the balls-into-bins problem. Let Pinfect be the 
probability that the phage infects a bacterium after 
a unit of time and let σ be the phage death rate in a 
unit of time. We consider each released phage as a 
ball and assume there are k empty bacteria out of m 
reachable bacteria in the environment (a bacterium 
is defined as reachable if the released phages infect 
it during their lifetime). Note that a released phage 
might have one of the following situations after a unit 
of time (e.g. an hour):

It might infect an empty bacterium with 
probability Pinfect×k⁄m. We model each empty 
bacterium by a blue bin in the corresponding balls-
into-bins problem.

It might infect a non-empty bacterium with 
probability Pinfect×(m-k)⁄m. We model each non-
empty bacterium by a red bin in the corresponding 
balls-into-bins problem.

It might die with probability (1-Pinfect)σ. We model 
this situation by a black bin in the corresponding 
balls-into-bins problem.

None of above with probability (1-Pinfect) (1-
σ). We model this situation by a white bin in the 
corresponding balls-into-bins problem.

To compute the expected number of phages that 
infect an empty bacterium, which is the same as 
the expected number of occupied blue bins in the 
corresponding balls-into-bins problem, algorithm 
1 is used to obtain the value of xn´,k´ for all 0≤n´≤n 
and 0≤k´≤m. Xn, kˊ represents the expected number 
of empty bacteria that are infected by released 
phages where the number of empty bacteria is 
k´out of the m reachable bacteria. Having all Xn, kˊ, 
we compute the expected number of survivors as:

          m
xempty=∑
        k´=0

P(k´bacteria out of m are empty)×xn,k´    (6)

The probability that a bacterium is empty is e-λ 

based on Equation 1, which gives:

P (k´bacteria out of m are empty)= 
  m (k´) e-λk´  (1-e-λ) m-k´    (7)

Therefore, the utility of the lytic pathway (i.e. the 
expected number of survivors) can be calculated 
by Equation 8.

          m
xempty=∑
          k´=0

e-λk´ (1-e-λ)m-k´×xn,k´                      (8)
  m (k´)

Probability of each action
The last step is to compute the probability of 

each action based on their utilities. In game theory, 
players are assumed to act rationally and choose the 
action with the highest payoff (30, 31). However, 
the full rationality assumption is often violated in 
modeling human behaviors, real world situations 
and physics. In fact, decision makers usually deviate 
from a fully rational move due to many reasons such 
as lack of information, the required time to make 
decision and cognitive limitations (32-36). The 
noisy-best response is one of the well-known models 
for studying a situation when a decision is made in 
the real world (37-40). In this model, the probability 
of action i with utility ui is proportional to eβui. The 
noisy-best response is similar to the Boltzmann-
Gibbs distribution in statistical mechanics that 
describe the probability distribution over various 
states of a system (41-43). By using the noisy-best 
response for modeling the lysis-lysogeny decision, 
one can write the probability of lysis and lysogeny 
actions as:

Plysis=eBulysis/eBulysis +eBulysogeny                                                       (9)

Plysogeny=eBulysogeny/eBulysis+eBulysogeny                                    (10)

Where ulysis and ulysogeny  represent the expected 
utility of the lytic and the lysogenic pathways 
respectively, and β can be seen as the inverse level 
of noise in the decision-making process. In a fully 
rational decision, β reaches infinity. However, in 
almost all real-world applications, there is a level 
of noise and the value of β is thus not assumed to 
reach infinity in these situations (In this paper we 
have investigated various behaviors with respect 
to different values of β. We have found β=1.2 to 
better match the behavior of bacteriophages that 
are reported in experimental studies, and all figures 
are based on   β=1.2.) (37-40).
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Results
The main goal of this study was to demonstrate 

that the behavior of bacteriophages in a bacterium 
matches the behavior of a rational-decision maker, 
which is aimed to maximize offspring longevity. 

The utility of the lytic pathway

For the sake of simplicity, we first computed the 
expected number of survivors by assuming that the 
infection processes of released phages are totally 
independent. This was done by calculating the 
survival probability of each released phage. Figure 
3 shows the utility of the lytic pathway (i.e., the 
expected number of survivors) based on the average 
MOI, by assumption of independent infection 
processes. We then calculated the expected number 
of survivors without the independence assumption 
by considering totally correlated infection processes. 
For this, the number of reachable bacteria, m, must be 
known. Figure 3 shows the expected number of empty 
bacteria that are infected by released phages when the 
infection process is correlated for m of 100, 500, and 
1000. The results demonstrate that the utility of the 
lytic pathway is almost independent of m. Moreover, 
the root-mean-square deviation (RMSD) between the 
independent case and the correlated case with m=100, 
m=500, and m=1000 was 0.048, 0.010, and 0.005 
respectively. Given the differences were negligible, 
any m may be chosen for the further steps.

The probability of the lytic pathway

In the next step, we compute the probability of 
each action in a rational move. The probability 
of the lysogenic pathway is shown based on the 
average MOI in Figure 4 where the utility of 
the lysogenic pathway is set to 1 and the utility 
of the lytic pathway is found as in Figure 3. We 
use m=100, n=40,  β=1, α=1.2, probability of 
infection=5.3e-9, density of bacteria=2.5e7 and 
the phage infection rate at 0.163. We compare 
the behavior of a rational move with the behavior 
of phages by using the experimental data, as 
previously described. In these experimental 
studies the probability of the lysogenic pathway 
is measured based on the average MOI (i.e., the 
average phage input). According to Figure 4, the 
behavior of phages could be modeled by a rational 
decision. We also employ the root-mean-square 
error (RMSE) to show the similarity between 
the results of the proposed model and all the 

experimental data together (22-25). An RMSE 
of 0.0910 was obtained with a range from 0.0779 
based on data in (23-25) to 0.1058 based on data 
in (22), thus showing the accuracy of the model.

Fig.3: The utility of the lytic pathway vs the average multiplicity 
of infection (MOI). The utility of the lytic pathway for a rational 
decision maker in different environmental situations (i.e., 
different average MOIs) is given. The infection processes of 
released phages are independent and the infection processes of 
released phages are dependent. We compute the utility of the 
lytic pathway for m=100, m=500, and m=1000 where m is the 
number of reachable bacteria. The utility of the lytic pathway is 
not sensitive to this parameter.

Fig.4: The probability of the lysogenic pathway vs. the average 
multiplicity of infection (MOI). The blue curve shows the prediction of 
our model, green circles represent the experimental data described 
by Zeng et al. (22), and red circles are based on experimental data 
described in (23-25). We compute the probability of both lytic and 
lysogenic pathways based on a noisy-best response dynamics. We 
assume the utility of lysogeny is 1 and the utility of lysis is defined as 
the expected number of survivors. 



          CELL JOURNAL(Yakhteh), Vol 19, No 3, Oct-Dec (Autumn) 2017 349

Probability of the lytic pathway based on varying 
host bacterium MOI, size and concentration

The experimental data in (22) also had 
measured the probability of lysogeny with 
respect to the host bacterium MOI, size, and 
concentration, allowing us to examine the 
predictive power of our model in more detail. 
We consider a bacterium with size L that is 
infected by μ phages. Size L is the volume of 
the bacterium and therefore it is L times larger 
than the average bacterium. In this situation, a 
rational decision maker has to select between 
the lytic and the lysogenic pathways by probing 
the host bacterium MOI and size. The utility 
of each action is defined based on the average 
MOI rather than the host bacterium MOI and 
size. However, the average MOI is unknown to 
a rational decision maker and should be inferred 
based on the host bacterium and size. Given that 
a Poisson process models the infection process, 
it may be used to find the probability of having 
a particular average MOI by using a Bayes 

rule and compute the expected utility of each 
action by integrating over all possible average 
MOIs. After computing the expected utility 
of each action, the probability of each action 
is computed based on noisy-best response 
dynamics. We employed the same dynamics for 
data represented in Figure 4. 

The probability of the lysogenic pathway based 
on various host MOI size and concentration 
is shown in Figure 5. In specific, Figure 5A 
represents the effect of the host bacterium MOI 
on the probability of the lysogenic pathway by 
integrating over all possible host bacterium sizes. 
An RMSE of 0.0763 illustrates the predictive 
power of the proposed model. Moreover, 
the probability of lysogeny at different host 
bacterium concentrations is shown in Figure 
5B. Our model predicts a higher probability 
of lysogeny for a host bacterium with a lower 
MOI (i.e., higher size), which matches the 
experimental data for a fixed concentration as 
described by Zeng et al. (22).

Fig.5: The utility of the lytic pathway based on varying host bacterium multiplicity of infection (MOI) and concentration. This figure shows 
that there is a clear correlation between the probability of lysogeny and the host bacterium MOI and concentration. A. The probability 
of choosing the lysogenic pathway based on the host bacterium MOI. The blue curve represents the behavior of a rational player based 
on the proposed model. Red circles represent the experimental data in (22) and B. The probability of choosing the lysogenic pathway 
based on the host bacterium concentration. Blue, red, and black curves represent the behavior of a rational player based on the proposed 
model for MOI of 1, 2 and 3 respectively. Blue, red, and black circles shows the experimental data as described by Zeng et al. (22) for MOI 
of 1, 2 and 3 respectively.

A B
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Discussion
In this study, we analyzed a fundamental 

phenotypic variation problem where bacteriophage 
lambda has to make a choice between the lytic 
and lysogenic pathways. Here, we present a 
clear quantitative model for this decision-making 
process. In addition, we have described the 
behavior of a selfish rational player, which aims to 
maximize its utility (i.e., the number of its offspring) 
in a noisy environment. We also compared this 
rational behavior with the observed behavior of 
the bacteriophage lambda previously reported (22-
25). We demonstrate that bacteriophages may be 
modeled as a rational player. In fact, the decision 
of a bacteriophage lambda can be seen as a selfish 
rational action maximizing the expected number of 
its own offspring.

Conclusion
We present a game theoretic framework to 

describe a rational decision-making process in 
various environmental situations, which is in 
line with the experimentally-observed behavior 
of bacteriophages. Our model also confirms that 
a rational decision is stochastic in nature. More 
importantly, this study presents a clear model for 
demonstrating that phenotypic variation may occur 
when no genotypic variation exists. We believe that 
our model may be used as a guideline for analysis 
of phenotypic variation problems.
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